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I. INTRODUCTION 

It is the stated object of this dissertation to investigate 

the influence of variation of foundation stiffness and founda

tion damping on the performance of nuclear containment type 

structures undergoing ground motions such as seismic distur

bances. Foundation stiffness and foundation damping are 

thought to be the significant foundation variables with respect 

to the influence of the foundation on structural response. 

Foundation soil types can range widely from conditions 

corresponding to bed rock to conditions corresponding to 

foundations of very soft clay or silt. The stiffness and 

damping characteristics associated with these foundation con

ditions are correspondingly wide ranging. For example, founda-

3 3 tion stiffness may vary from one Kg/cm to 100 Kg/cm and 

higher. The influence of such wide ranging conditions on the 

response of structures to dynamic forces is not well under

stood. With particular reference to structural design against 

seismic ground motions, lack of definitive information has been 

a serious impediment to accurate structural design analysis. 

Current practice in the design analysis of buildings does 

not take into account the underlying foundation and its prop

erties. The current edition of the Uniform Building Code, for 

example, incorporates no provisions for inclusion of underlying 

foundation characteristics when considering the dynamic behavior 

of buildings. As a consequence current design practice for 
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ground based structures is generally one of disregarding the 

foundation situation and considering, for analytical purposes, 

that the structure being designed is rigidly attached to its 

foundation. 

While the aforementioned approach is, at first glance, un

justifiably crude it has the obvious merit of lending consid

erable simplification to the analysis and, as will be noted in 

reading the current literature, is not entirely without basis 

for the typical multistoried building frame of modem curtain 

wall construction supported on spread type footings (26). 

When the particular structure to be analyzed is stiff, not 

flexible, and is constructed integrally with a raft or floating 

foundation, however, a potential exists for considerable change 

in structural response due to foundation action. A typical 

example of this type of structure would be the multistoried 

shear wall building erected on a raft type foundation because 

of poor soil conditions. 

Another type of structure of considerable stiffness and 

supported on a raft or slab foundation is the nuclear reactor 

containment structure. Typical of present day types of contain

ments are those shown in figures one through five. Figure one 

represents in outline a prestressed concrete containment for a 

rather small (perhaps 400 MWe) pressurized water reactor system. 

Figure two represents conceptually the same type of containment 

for a larger pressurized reactor system (perhaps 900 MWe). 

Figures three and four are the reinforced concrete counterparts 
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of systems represented by figures one and two, respectively. 

Figure five represents in outline a typical boiling water 

reactor unit of medium size (perhaps 600 MWe). The type I, II, 

III, and IV structures sketched in figures one through four are 

shell structures of simple geometry. They are fairly accurately 

modeled by just a few lump masses. The type V structure 

sketched in figure five is a massive rectangular frame structure 

of complexed geometry. It requires a considerable number of 

lumped masses for an accurate dynamic analysis. 

The potentially extremely serious consequences of failure 

of nuclear containment structures while undergoing seismic 

loading has required that a detailed dynamic analysis be made of 

each such structure to verify its capability to withstand seis

mic design loads. In such analyses a typical procedure employed 

by the designer proceeds in the following fashion. The struc

ture is first idealized as a lumped mass system. Generalized 

stiffnesses are assigned between masses and between the founda

tion mass and the supporting subsoil to include rocking and 

translational stiffnesses (typical containment structures are 

shown in figures one through five and their conventional ideal

ization is shown in figure six). Next, the non-damped eigen

values and eigenvectors are determined including, in general, 

a rotational coordinate. To each mode of vibration a damping 

percentage is assigned and each mode shape is treated in the 

subsequent steps as an equivalent single degree-of-freedom 

system. Using a response spectrum procedure or an actual 
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earthquake time history the modal response for each mode is 

evaluated. Finally, the total response of the structure as a 

function of time or as a selected combination of modal maxima 

is secured. 

As seen from the above description an attempt is presently 

being made to incorporate foundation conditions into the deter

mination of nuclear structure response. However, three 

problems of fundamental nature impede the analysis and continue 

to cast doubt onto the validity of the results. First, the 

damping percentages to assign to individual vibrational modes 

are not known. Even for standard structural types the designer 

must rely on damping values obtained from forced vibration of 

only a limited number of structures at very low force levels 

that do not develop realistic damping action since, as is 

commonly recognized, more damping is developed as cracking and 

other damping mechanisms are brought into play at higher force 

levels. Second, the stiffness and damping coefficients for 

foundation translation and rocking are not known with any great 

degree of certainty because of the little research effort ths-.t 

has, to the present, been devoted to obtaining such coeffi

cients. Lastly, the modal analysis method currently extensively 

used has as its theoretical basis the decoupling afforded the 

equations of motion of an undamped system through the use of a 

linear transformation. 

Where a damped structural system is to be analyzed this 

decoupling is obtainable only when the damping matrix coeffi-
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cients are term by term proportional to the coefficients of 

either the mass matrix or the stiffness matrix or a linear 

combination of these two matrices. Such damping is then termed 

proportional. However, for structural systems the requirement 

of proportional damping is a very restrictive one. Signifi

cantly large, pronounce.ly nonproportional damping is developed 

in structural systems where structure-foundation interaction 

is present. 

As seen from the proceeding brief account of current analy

sis procedures and areas of uncertainity that exist in appli

cation of these procedures to problems where the foundation is 

potentially involved in the action of the structure, consider

able research investigation is required in a number of areas 

before dynamic analysis of the complete structure-foundation 

system is on a sound analytical basis. It is the purpose of 

this dissertation to contribute to putting this area of analysis 

on a firmer basis by investigating 

a) the role that the foundation conditions of stiffness and 

damping can play in moderating (or amplifying) the 

stresses in the superstructure and 

b) the validity of current procedures in computing super

structure stress for varying magnitudes of foundation 

stiffness and damping. 

The scope of this investigation is further restricted to 

include only reactor containment structures. Such structures 

are large and stiff and possess raft type foundations- They 
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receive as a matter of routine detailed dynamic analyses of the 

type previously described. Their design is of considerable 

current interest due to the rapid expansion of the nuclear power 

program. 
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Figure 1. Type I containment structure 
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Figure 2. Type II containment structure 
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Figure 3. Type III containment structure 
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Figure 4. Type IV containment structure 
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Figure 5. Type V containment structure 
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Figure 6. Typical lumped mass idealization of a containment 

structure 
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II. NOTATION AND SYMBOLS 

A. Notation 

Lumped masses of lumped parameter system (Kip-

sec^/ft) 

Equivalent translational stiffness of struc

tural elements (Kip/ft) 

Translational stiffness of foundation (Kip/ft) 

Rotational stiffness of foundation (Kip/radian) 

Translational energy dissipation factor in 

structural elements as equivalent viscous 

damping (Kip/ft/sec) 

Translational energy dissipation factor in foun

dation as equivalent viscous damping (Kip/ft/sec) 

Rotational energy dissipation factor in founda

tion as equivalent viscous damping (Kip/rad/sec) 

Fraction of critical damping, present in 

system (nondimensional) 

2 Mass matrix (Kip-sec /ft) 

Damping coefficient matrix (Kip-sec/ft) 

Stiffness coefficient matrix 

Inertia matrix (Kip-sec -ft) 

Length (ft) 

Young's Modulus (Kip/ft^) 

Shearing modulus (Kip/ft^) 

2 Moment of inertia (Kip-sec -ft); identity 

matrix 
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2 Effective shear area (ft ) 

General rotational coordinate (radians) 

General translational coordinate (ft) 

Modal circular frequency, ith mode (radians/ 

sec) 

Unit vector matrix 

Unit vector; ith vector 

Matrix of modal circular frequencies 

(diagonal) (radian/sec) 

Diagonal matrix of modal participation damping 

coefficients 

Participation factor vector 

Column vector written in text as a row vector 

Flexural stiffness coefficient 

Proportionality factors 

Zero element locations in generalized matrix 

Non-zero element locations in generalized 

matrix 

Natural frequency of the ith vibrational mode 

Mass of internal equipment and structures 

Moment of inertia of internal equipment and 

structures 
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B. Symbols 

V High Gain Amplifier 

X Inverter 

X M 
Y IQ-

Z -h 
V Summer 

Integrator 

X V Potentiometer (Grounded) 

Electronic Switch 
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V Potentiometer (Ungrounded) 

Multiplier 

D- Manual Switch 

Feedback Limiter 

Reference Voltage 

CD Recorder Input 
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III. PROGRAM OF INVESTIGATION 

A. General 

In section V the containment structure and its associated 

foundation are idealized as a lumped parameter mathematical 

model and the applicable set of ordinary differential equations 

is developed. In section VI the basis in back of the selection 

of specific parameter ranges for the constants in these equa

tions is presented. In section VII the equation set developed 

in section V is put into a form suitable for analog computer 

analysis and programed for the analog computer. Finally, in 

section VIII, the analytical solution method for the stiffness 

investigation is outlined, the procedure is applied to a par

ticular case as an example, and a digital computer program is 

prepared to automate the solution procedure. 

In accordance with the object of this investigation as 

stated in the introduction the computational tools described in 

the previous paragraph are applied in a parameter study of the 

influence of foundation stiffness and damping. A series of 

five nuclear containment structures (see figures one through 

five), to represent the range of sizes of such structures now 

being put into service was selected and structural parameters 

suitable for them were calculated from available data. Param

eter runs as described in this section were made. The results 

of these parameter runs are discussed in section IX. The de

tailed input data used for the runs is tabulated in Appendix B. 
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B. Stiffness Investigation 

The investigation of the influence of foundation stiffness 

on structural response is by means of digital computation. A 

range of foundation stiffnesses from some considerably softer 

than normally considered for construction to stiffnesses ap

proaching bed rock conditions have been selected. Five general 

foundation situations have been studied. 

The first situation is one in which foundation freedom is 

solely transiational. A structure with this type of foundation 

is, in this study, designated as a "translational" structure. 

A second general foundation situation is one where the founda

tion is free to rotate but is restrained against translation. 

A structure with such a foundation is termed for the purposes 

of this study as a "rotational" structure. A third possible 

foundation situation, of course, is one where the foundation is 

both free to rotate and translate. Subcases of structures that 

lie in the free to translate and rotate category are structures 

free to translate and rotate a) where the translational and 

rotational stiffnesses (K^ and K^) are proportional and b) 

structures where the foundation may take on any number of trans

lational stiffness values but can assume only one rotational 

stiffness value. A structure with the former situation as the 

foundation situation is termed a "combined variable K " struc-
r 

ture whereas one with the latter foundation situation is termed 

a "combined constant K " structure. For each of these situ-
r 

ations, type I and type II containment structures were inves
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tigated for four different partitionings of base and top masses 

through a range of fourteen stiffness values. The type III, 

type IV and type V structures were investigated for all the 

same situations. The type III, IV and V structures were in

vestigated using only one assumed mass distribution, however. 

The total investigation encompassed a total of 784 separate 

undamped modal analyses. For all analyses a modal absolute sum 

combination was used in conjunction with an idealized El Centro 

response spectra (see figure thirteen). 

An actual foundation that could be considered as idealized 

by the first situation would be, in specific instances, one 

where the containment base is founded on a pile foundation with 

piling driven to bed rock or to refusal in an extremely stiff 

substrata. A physical situation that could be considered as 

idealized by situation two includes a case where the contain

ment is on a soil cushion but yet keyed into bed rock, perhaps 

by a reactor vessel sump. The third general situation could 

idealize the physical situation where the containment rests on 

granular material. Lastly, a system of limited rotational 

restraint might be representative of a more typical pile foun

dation condition. 

C. Damping Investigation 

The investigation of foundation damping effects has been 

primarily by analog computer methods. However, for comparative 

purposes, a complete set of modal absolute sum calculations 
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with varied modal damping percentages has also been made. From 

the parametric study of stiffness influence it was observed 

that the type III and type IV reinforced concrete structures 

were very similar in structure response to their type I and 

II prèstressed concrete counterparts. The type V structure 

fell, response wise, also in the general behavior pattern of 

type I and type II structures. In view of these facts it was 

considered tha' - railed investigation of type I and type II 

structure founds ''. damping influence would adequately cover 

the range of behavior. The damping investigation was, as a 

result, restricted to an investigation of these two cases. 

For each of these two structural types, the situations 

where a) the foundation is free only to translate, b) free only 

to rotate and c) where both translational and rotational free

dom are present have been investigated. For each of these 

situations a set of twelve separate foundation stiffnesses 

(twelve of the fourteen stiffnesses previously employed in the 

stiffness investigation) have been applied. For each foundation 

stiffness value the accompanying damping percentage was varied 

from zero to forty percent in six increments. All in all, two 

hundred sixteen cases were investigated for each structure to 

sum to a grand total of four hundred thirty-two separate analog 

computer runs. 
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IV. REVIEW OF RELATED LITERATURE 

The influence of foundation conditions on the performance 

of structures undergoing ground motions has for some time been 

a matter of speculation by engineers. As early as 1930 Jacobsen 

(20) studied the cantilever beam embedded in an elastic material. 

Biot (4) in his engineering seismology paper obtained a simple 

expression to represent the elastic stiffness coefficient for 

the rocking motion of an infinite strip resting on an elastic 

half space, Merritt and Housner (26) investigated the effect 

of rocking on the maximum base shear force and fundamental 

period of tall buildings under typical earthquake ground motion. 

Their study was restricted to flexible structures with spread 

footings. The influence of foundation conditions on the period 

of framed structures was also investigated by Salvadori and 

Heer (36) for buildings of curtain wall type. They used the 

elastic stiffness coefficient of Biot and a horizontal shear 

modulus in developing a period that included elastic foundation 

considerations. Thomson (41) extended Merritt and Housner's 

study analytically to include consideration of the more gen

eralized case of a tall, flexible structure with spread 

footings. The studies by both Merritt and Housner and Thomson 

supported a conclusion that, in considering structures of a tall, 

flexible type, neglect of foundation properties was justifiable 

and such structures could, without loss of accuracy, be ana

lyzed as fixed base structures. 
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Field observations indicate, however, that the above con

clusions may not be generalized to include stiff, shear wall 

type structures. Surveys of earthquake damage in Japan (23), 

where structures are as a practice rather short and of shear 

wall construction, have indicated significant influence by foun

dation conditions on structural performance. American expe

rience with earthquake response of stiff structures has also 

led American engineers (25) to believe that foundation condi

tions can have considerable effect on structural response. 

One observation of structural response as influenced by 

foundation conditions that is particularly relevant to this 

study is Housner's (14) response spectrum from the Arvin-

Tehachapi earthquake. For this earthquake Housner developed 

response spectra from an accelogram record obtained from the 

basement of a large (141 feet high by 51 feet wide by 217 feet 

long) monolithic reinforced concrete building and from an 

accelogram record of a ground station in the close proximity of 

the same building. The response spectrum from the ground 

acceleration recorded in the structure's basement was, in the 

period range from zero to one and one-half seconds, approxi

mately forty percent smaller than the spectrum developed from 

an accelogram obtained from a ground station in the close prox

imity for the East-West direction. The measured period of the 

structure in this direction was 0,49 seconds. It is noteworthy 

that containment structures have calculated periods in the 0.10 

to 0.50 second range and, also, have dimensions of the same 
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scale as Housner's structure. 

Researchers at the Naval Research Laboratory have also 

studied the foundation-structure interaction problem starting 

in early 1960. Dealing primarily with naval shipboard equip

ment it was reported by Belsheim and O'Hara (2) that the founda

tion-structure interaction effect was responsible for a pro

nounced dip in the foundation spectrum curves near the natural 

frequency of the particular structure. Spectrum curves that 

incorporated this spectrum dip as a function of equipment weight 

were incorporated into the dynamic design method for major ship

board equipment (30). 

Also related to the foundation-structure interaction prob

lem has been the response spectrum development work of Housner. 

Housner averaged spectrum values from selected earthquakes at 

various locations in California after making adjustments for 

shock magnitude and epicenter distance. These averaged curves 

have been useful in design. However, in practice, magnitudes 

taken from such curves can be conservative or non-conservative 

depending on the degree of structure-foundation interaction. 

Rosenblueth (35) in 1961 pointed out the potential signif

icance of foundation-structure interaction in commenting to 

the effect that there were indications that spectra computed 

from free ground motion greatly overestimated structural 

response in specific natural period ranges. 

The effect of structure-foundation interaction has also 

been studied by Lycan and Newmark (24). In their study the 
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effect of soil inertia was found to have a significant effect 

on structural response. 

Recently, Scarvazzo (37) has analytically coupled an N-

mass structure with a one dimensional ground wave and reduced 

the problem to that of the solution of a Volterra type integral 

equation. For some simple free ground acceleration functions 

he has shown reductions in spectral acceleration to be signif

icant. Also very recently Jennings and Kuroiwa (21) have shown 

that even for firm foundations, where fairly stiff shear 

walled structures are involved, foundation interaction is 

measurable. 

Lastly, Seed and Idrirc (39)(40) have very recently shown 

lumped masses to be an appropriate foundation representation 

when ground surface, rock surface and soil layer boundaries are 

essentially horizontal. 
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V. MATHEMATICAL FORMULATION OF PROBLEM 

A. General Two Free Mass System 

The problem of a structure undergoing ground motion can be 

reduced with little loss of accuracy to that of a lumped param

eter system of effective masses connected together by equiva

lent stiffness springs. Normal modeling of a containment sys

tem would include the assumption of sufficient lumped masses 

so that the dynamics of the lumped mass system closely approxi

mated that of the distributed mass structure. For this investi

gation the details of mass distribution and structural stiffness 

are not too important, however, and the structure can be de

scribed with sufficient accuracy by using a two free mass sys

tem. One mass is taken to describe the base mass and contrib

uting side wall mass. A second mass is given a value appro

priate to describe the dome and upper side wall contribution. 

The model to represent this situation is shown as figure seven. 

In order to derive the differential equations of motion each 

mass is isolated, in turn, as a free body and the following 

forces are observed as acting. 

For the top mass- M Y + MgHg 8 + M^X^^ 
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Figure 7. Idealization of generalized two free mass problem 
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Likewise, for the base mass: 

KgXg 

Kl(Xl - Xq) 

Ci(Xi - Xq) 

KgXg 

Summing forces in the horizontal direction after applying 

D'Alembert's principle yields the following equations of motion. 

MgXg + 0 + + CgXg + KgXg = 0 (5.1) 

- CgXg - KgXg - C^Xq - K^Xg = C 

Likewise, considering the system as a unit and considering 

rotational equilibrium about the centroid of the base the 

following forces are shown as acting: 

MgXg + M^xj^ + 

Kr® 
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Taking moments about the base after applying D'Alembert's 

principle yields 

9+ (I^ + I^) 9 + + K^e = 0 

(5.2) 

Letting I q = and rearranging the preceding three 

equations into matrix form yields 

^2 "2». 

0 
"l 

0 

% MgHg O
 

H
 

— MgH 

i; 

+ 

V 

-C 

0 

C, 

0 

0 2 "1 

0 0 C 

^2 

^1 

0 
(5.3) 

Kg 0 

-Kg 

0 0 

0 

0 

K 

X, 

C^Xq + 

It can be seen that the preceding formulation has lead to 

non symmetric off diagonal elements in the system matrices. 

This is undesirable. To symmetrize the matrices one first 

defines as new variable X^ as follows: 

=1 = Xi - *0 

Correspondingly, 

• 1 X = X - X, 

X^ = X - X, 
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Making these substitutions yields 

8 + + Xg) + CgXg + KgXg =0 (5.4) 

M^CXi^ + XQ) + C^CX^ + Xq) + K^CX^l + XQ) - CgXg 

-% - c^io - Vo = 0 

+ Xq) + + IQ 9 + C^8 + K^8 =0. 

Rearranging 

••1 
MgX^ + ̂ 2^1 ^2^2® C^Xg + KgXg = -M^Xg (5.5) 

MiXi^ + ^1^1^ + ̂ 1^1^ " CgXg - KgXg = -M^Xq 

MgHgXg + 6 + Iq e + C^8 + K^8 = -M^H^Xg 

Now, making the additional linear transformation 

X^^ = Xg + X^^ 

And substituting into the previous equations yields 

MgCXg - x*^) + 8 + CgCXg^ - X^^) (5.6) 

+K2(X2^ - X^^) = -MgXo 

Vl^ + C^X^l + K^X^l - - X^l) - K2(X2^ - X^^) 

= -M^XÔ 

N2H2(X^1 - X^l) + M2H2X*^ + * ^0 ® "" ^r® "" ^r® 

= -M^HgXg 
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Again, rearranging, 

+ M2H2 V + - 02X^1 + - K2X^1 = -M2XQ (5.7) 

+ C^X^^ + K^X^l - CgXg^ + C^X^^ - K2X2^ + KgX^^ = -M^XQ 

MzHaXgl + + :o* + SrS + KpG = -MzHz^O 

placing into matrix form and dropping primes for mathematical 

simplicity yields 

*2 0 M2H 

0 
^1 

0 

^2^2 0 0
 

H
 

K2 -K2 0 

-K2 0 

0 0 
^r 

^2 
+ 

V 

-C, 

-MgXo 

-M1XÔ ^ 

-M^HgXg 

-C, 

C1+C2 

0 

0 

c_ 

X2 

^1 .
 C

D
 

1
 

(5.8) 

B. General Three Free Mass System 

The general three mass development proceeds in a manner 

analogous to that used in the previous section for the two free 

mass system. It is incorporated in this study, however, inas

much as a comparison of the resultant form of the derived 

equations with those arrived at in the preceding case permits 

an immediate generalization to the general multimass case. The 

model representing the system is shown in figure eight. Pro

ceeding as previously, each mass is isolated in turn as a free 

body. The following forces can then be observed as acting. 
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Figure 7a. Idealization of generalized two free mass in final 

trans formed coordinates 
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For the top mass: ^ M3X3 + M2H3 9 4. M3X1 

C3(X3 - X2) 

K, 
f (X3 - X;) 

K3 
— (^3 " ̂ 2) 

For the middle mass: 

Ko 
— (X3 - Xg) 

C^CXs - X,) 

— (^3 " *2) 

^2*2 

K.X, 

MgXg + MgHg e + 

K2X2 

Likewise, for the first mass 

^2" 
T 

KgXg KgXg 
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Figure 8. Idealization of generalized three mass system 
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Summing forces in the horizontal direction after applying 

D'Alembert's principle yields the following set of equations of 

motion. 

+ M3X3 + M3H3 9 + C3X3 + K3X3 - C3X2 - K3X2 =0 (5.9) 

M^X]^ + N^X^ + 0 + CgXg + KgXg - C3X3 - K3X3 

+C3X2 + K3X2 = 0 

- CgXg - KgXg - CJ^Xq - KJ^XQ = 0 

Again considering the system as a unit and investigating rota

tional equilibrium around the centroid of the base mass shows 

the following forces as acting. 

— ^ 
M3X3 + M3H38 + M3X1 

MgX^ + MgHg e + M^X^ "e 
Z2 

K^e 

Taking moments around the centroid of the base after 

applying D'Alembert's principle yields 
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M3X3H3 + + MgX^Hg + 9 + 8 + (I^ + %% 

+ I3) 0 + c^e + K^e = 0 
(5.10) 

Letting Ig = + Ig + I3 and rearranging the preceding 

set of four equations into matrix form yields: 

M3 0 M3 

0 M2 M2 

0 0 

Vs % M3H 

% 

M3H3 

0 

x; 

X-

*9 

(5.11) 

^3 

-C, 

0 

0 

-G, 

C, + C, 

— Cm 

0 

0 

Cn 

0 

0 

0 

c 

K3 .K3 0 0 

-K3 Kg + K3 0 0 

0 -Kg ^1 
0 

0 0 0 K 

is 

Xg 

^1 

8 

^3 
0 

04 X 0 

^1 

e 0 

"1^0 

Likewise, if the first mass movement is expressed in refer

ence to the translating foundation instead of in reference to a 
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fixed location the equations of motion become: 

M3X3 + + Mgxi + Mgig + C3X3 + K3X3 - 03]^ - = 0 

+M2X2 + 6 + MgX^ + NgXg + CgXg + KgXg - C3X3 - K3X3 

+C3X2 + K3X2 = 0 
(5.12) 

Vl ^1^0 ^1^1 "*• Kl%l - ^2^2 ~ ^2^2 ^ ° 

M, [3X3H3 + MsX^Hs + M3XQH3 + MgXgHg + 

+M3H3^ + 9 + Ig 8 + C^'Q + K_e =0 

Again rearranging into matrix form these equations can be ex

pressed as follows: 

M3 0 M3 M3H 

0 M2 ^2 
M^H 

0 0 Ml 0 

M3H3 % M3H3 

^«2 

IQ 

M^H 

+ 

C3 -C3 0 

-C3 ^2 + C3 0 

0 
-^2 Cl 

0 0 0 

+ M3H3' 

i; 

x* 

*0 

'
.
>
r
 

1 

X2 

^1 

8 

(5.13) 
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*3 -*3 

-Kg Kg + Kg 

0 -Ko 

0 0 

J h 

0 0 X3 

0 0 X2 

^1 
0 ^1 

0 

-M3X0 

As with the two free mass development, neither of the pre

ceding two formulations is desirable because of the lack of 

symmetry of the matrices involved. Therefore the further trans

formations, = X, + X^^ and Xg^ = Xg + X^^ are made. The 

equations of motion then become: 

4. M3H3V + M^x" + €3^3^ - C3X1 4. K3X3I - K3X3, 

-03X2^ + C3X1 - KgXgl + K3X1 = 0 (5.14) 

+ MgHg'e' + M^Xg + CgXg^ - CgX^ + KgXg^ - K^X^ - €3X3^ 

+03X1^ - K3X3'- 4- K3X^ 4. C3X2I - CjX^^ 4. K3X2I - KjX^ = 0 

+ M^Xg + C^X^ + K^X^ - CgXg^ + CgX^ - KgXg^ + KgX^ 

M^Xg^Hg + MgXg^H^ + M3XQH3 + + M3H3^ 9 + ® 

+ Iq + C^'e + K^e = 0. 

After eliminating like terms these equations reduce to: 

4. M3H3'9 4. M3X; 4. 03^3^ 4. K3X3I - €3X3^ - K3X2I = 0 

MgXg^ + M2H2 8 + M^Xg + CgXg^ - CgX^ + KgXg^ - KgX^ (5.15) 
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- KgXgl + + KgXg^ = 0 

Vo C^X^ + K^X^ - CgX^l + CgX^ - KgXg^ + KgX^ 

MgX^^H^ + MgXgSlg + M3XQH3 + 

+IqV + c^G + K^e = 0. 

Placing into matrix form and dropping primes for mathe

matical simplicity yields: 

M3 0 0 M3H3 

0 M2 0 M2H2 

0 0 
^1 0 

% 0 

+ 

^3 -C3 0 

-C3 S + C3 -s 

"S Cl + 

0 0 0 

+ 

^3 -K3 0 

-K3 K2 + K3 -K2 

0 -K2 Kl + K 

0 0 0 

X. 

Xr 

0 

0 

0 

s 

0 

0 

0 

K 

X, 

(5.16) 

—• — 

^3 

X2 — -MgXo 

^1 -Miâg 

e 
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If there is no base rotation 8 is zero and the matrix 

equation reduces to: 

• *11 r 
c M3 0 0 

0 M2 0 

0 0 M. 

3 

-C, 

—c. 

Cg + C3 

—C i 

0 

-c. 

Cl + Cz 

^3' 

^2' 

K3 

-K, 

0 

-K, 

Kg + Kg 

-K« 

0 

-K, 

*1 + *2 

-Vo 

-VÔ 

(5.17) 

If there is no base translation,= 0 and the matrix 

equation reduces to: 

M3 0 M3H3 C3 -^3 0 

0 M2 MgHg + -C3 S + C3 0 

M3H3 ^2^2 ^0 *0 0 0 Cr_ 

M3H3: 

+M2H2 (5.18) 

zr —1 
• I 1 • • 

X3 K3 -K, 0 X3 -Vo 

^2^ 
+ -K3 Kg + K3 ( D X2^ 

= 
-MgXÔ 

ê 0 0 Kr 9 
— — — — __ _ • • 

^0 

If there is no translation or rotation, X^ = 0 and 6=0. 

The matrix equation then reduces to: 
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0 

0 M, 

1"^ 

p7l 
• *1 

+ 

_^2_ 

-C, 

~C/ Cz + C3 

K, -K, 

-*3 *2 + K3 

% 
(5.19) 

C. Multimass Extension cf Equations 

The methods used in the previous two sections to derive 

the two and three mass systems of equations can be, of course, 

used in an analogous manner to accomodate any system of the 

same form but with an increased number of lumped masses. How

ever, comparing the final forms of the two and three mass 

system equations (see euations 5.8 and 5.16) it becomes appar

ent that the generalized "N" free mass system will take the 

following form. 

0 
^-1 

. 0  

0.  

&-2 

.0 * 

0 

.M, 

0 

0 

N 

z 
i=2 

MiHi 

1 

: 

%N-1 

^1 

•0* 

(5.20) 
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"N "^N 

-C. N S S-1 

0 

"Vl 
* * 

0 

-^N 0 

^ ^-1 ~^-I' 

-Vo 

-^i-A 

-Vo 

-± 
i=2 

M^H. XQ 

^-1 

N 

^-1 

.K 

or, using a shortened notation 

M X  +  C X + K X  =  F  

where M denotes the previous mass matrix 

(5.21) 
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C denotes the previous damping coefficient matrix 

K denotes the previous stiffness coefficient matrix 

F denotes the inertial matrix. 
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VI. SELECTION OF PARAMETER VALUES 

A. General 

Any study of structure-foundation vibration requires at 

the outset a selection of appropriate structure and foundation 

mass, stiffness and damping values. The proper selection of 

these values is a subject which still requires much investiga

tion. It is not the purpose of this section to offer any new 

information on this field, however. Rather, the literature 

on this subject is briefly and selectively reviewed with the 

intent of establishing the basis for the general range of 

values selected for a more detailed parametric examination. 

Selection of meaningful strucci ral stiffness values is on 

a firm calculational basis for normal structural elements. When 

structural elements have proportions that make questionable the 

application of a mechanics of materials approach or when complex 

structural systems are considered, some degree of uncertainity 

still exists, however. The selection of structural damping 

values, conversely, has little experimental or theoretical 

basis and much research in this area is still required. 

The problem of characterizing the dynamic properties of a 

foundation is thought reducible to that of selecting appropriate 

values for three factors; effective foundation mass and inertia, 

foundation stiffness, and foundation percent of critical damping. 

It has been shown through research that the effective foundation 

mass is, to a good approximation, the mass of the foundation 
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slab for structures of the type considered in this investiga

tion. For foundation stiffness, recent advances in the theory 

of vibration of rigid bodies on elastic foundations and new 

data from large field tests now enable the analyst to make at 

least a good order of magnitude determination of foundation 

stiffness values. The state-of-the-art with respect to selec

tion of suitable foundation damping values is not as far 

advanced. It parallels roughly the structural damping situation. 

The stiffness of individual structural elements is com

monly known and can be calculated precisely. When considering 

an assemblage of such elements, as indicated previously, the 

calculation can be quite complex and can, for many situations, 

be made in only an approximate manner. Blume, Newmark 

and Coming (6) discuss this problem extensively. For the 

structures of this investigation the structural framing system 

can, with sufficient accuracy, be considered as single or mul

tiple shear walls. For such shapes the deflection due to lat

eral load can be represented by the formulas: 

B. Structural Stiffness and Mass 

For shear : -rpr 
AG 

FL^ For flexure: 

(6.1) 

( 6 . 2 )  

The combined stiffness then becomes 

K = F 

AF 
+ 
AS 
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F ^ 
FL . FL 
ÂG ^ 
FL 
AG 

EIAG ( 6 . 3 )  
L(AGir+^EI) 

The procedures used and the results of this study are not 

dependent upon a precise determination of stiffness inasmuch as 

all results are expressible in terms of the relation between 

foundation and structural stiffness. However, a better than 

order of magnitude determination is desirable to establish the 

approximate upper and lower limits of containment structural 

stiffness and, also, to establish the foundation to structure 

stiffness ratios of interest. The value of^ must range be

tween 12.0 (corresponding to fixed pier action) and 3.0 (cor

responding to cantilever pier action). If the containments 

were open at the top (side walls only) the 3.0 value would be 

applicable. If the containment dome (and ring beam for the 

prestressed concrete containments) sections are very stiff and 

massive with respect to the walls of the structure the 12.0 

value would be applicable. The actual situation lies somewhat 

between these two situations. For this study a value of 12.0 

was arbitarily selected. 

In addition, the following values of E (modulus of elas

ticity) and G (shear modulus) were selected as appropriate for 

concrete : 
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E = 3 X 10^ psi (Type III, IV and V structures) 

= 5 X 10^ psi (Type I and II structures) 

G = 1/3 of corresponding E value 

The lumping of masses is a feature of the structural model 

for which equations of motion were developed in the previous 

section. It is desirable to assign values to these masses (M^ 

and Mg) such that the actual non-uniformly distributed mass of 

the structure is accurately dynamically modeled. The guidance 

that is available in this area is generally related to the dy

namically modeling of a distributed mass with an equivalent mass 

in a single degree of freedom system. Inasmuch as the system 

considered in this study is not reducible to a single degree of 

freedom except in special cases, this technique is not appli

cable. 

For this research three criteria for mass lumping were 

used. For all stiffness and damping investigations the total 

moment of inertia of the containment structure was known with 

acceptable accuracy. The location of top mass (M^) concentra

tion was selected as the center of mass of the containment dome 

and the containment base mass (M^) was positioned at the center 

of the containment base since these were the two points of 

extraordinary mass concentration. The value of was fixed as 

the distance between these two masses. The top mass (M^) was 

then sized by requiring M2H2 to equate to the total contain

ment structure moment of inertia about the center of mass of 

the base. , in turn, equals this total moment divided by Hg. 
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The mass value was selected such that the sum of the two 

masses (M^ and M^) totaled to the containment mass. This 

criteria is called the equated top mass" criterion. 

An alternate mass sizing criterion, called the "Half wall 

top mass" criteria was used for comparative purposes in part of 

the stiffness investigation. The values of total containment 

mass moment and mass moment of inertia were, of course, known 

values. The mass moment of inertia of the containment was 

preserved and the M2H2 value was specified so as to preserve 

total containment mass moment. The masses and were deter

mined by conceptually slicing the containment at mid height. 

All mass above this slice was assigned to the top mass and all 

mass below this slice was assigned to the bottom mass. 

To obtain an idea of the extent to which mass sizing could 

influence stmictioral response, two other mass selections were 

used in a limited number of cases. The previously described 

procedure was used to specify mass moment and mass moment of 

inertia. To establish and the conceptual slicing of the 

second procedure was used with mass partitions corresponding to 

slices at both the top and bottom third points being alter

nately considered. These cases are identified in the figures 

as the "One-third (two-thirds) side wall mass" criteria. 

C. Structural Damping 

Damping in structures has been investigated in only a very 

limited manner. Much of the research that has been done has, 

furthermore, been related to the damping characteristic of 
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samples. A summary of this work has been presented by Cole (9). 

Logarithmic energy decrements in the range of 0.02 to 0.03 have 

generally been reported for uncracked specimens. Where crack

ing occurred, the decrement was increased. No appreciable 

amplitude or frequency dependence has been observed. 

Some information has been compiled by investigators on the 

damping characteristics of complete buildings. The results of 

twenty tests on reinforced concrete shear type buildings has, 

as an example, been tabulated in table one. In these tests the 

buildings listed were all excited by mounting a vibrator in 

each structure and measuring the response at selected locations. 

Investigators at the test sites generally commented that they 

felt that greater damping could be anticipated in earthquakes of 

damaging intensity. The values listed in table one are reported 

first mode values. The difficulties involved in exciting higher 

modes have restricted the amount of data available on the damp

ing of the higher modes. The limited data available, however, 

supported a premise that damping is independent of mode (8). 

At the present time, the type of damping that is most char

acteristic of structural systems has also not been established. 

However, viscous damping is, perhaps, easier to handle mathe

matically than other possible types. It has, morever, been 

shown by Jacobsen (19) that the assumption of viscous damping 

is a justifiable approximation to other types of damping for 

forced vibration problems. 

For this investigation viscous damping has been used. In 
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use of this damping, coefficients have been selected by the pro

cedure of Lycan and Newmark (24). Specifically the structural 

damping coefficient C2 was evaluated by considering the struc

ture as fixed base. The coefficient Cg then is related by 

single degree-of-freedom theory to the mass of the structure, 

stiffness of the structure, and the known (or assumed) percent

age of critical damping in the structure by the relationship 

Cg = 2f/ MK. Application of this same procedure yields and 

in an analogous manner. The value chosen for f in the damp

ing phase of this investigation is 0.02. The fact that this 

represents a conservative but realistic value for damping in 

structural concrete can be seen by referral to table one. 

D. Foundation Stiffness 

With the analytical approach being used in this research 

it is required that foundation stiffnesses for foundation trans

lation and rocking be known. Probably the best information in 

this area is available through the research of Barkan (1). 

Barkan has shown these coefficients to be a function of soil 

type, size of foundation, and, to a limited degree, the geometry 

of the foundation. He has tabulated approximate ranges of 

values for these constants for broad soil classes. Where it is 

required for a specific site that these constants be determined 

fairly precisely, small scale field testing or accurate deter

mination of soil elastic constants is required. However, the 

general range of values listed by Barkan is more useful for 

this investigation. Barkan's data shows the coefficient of 
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Table 1. Damping in reinforced concrete buildings by vibrator 

testing (29)(5)(22) 

Number 
Structure Investigator of stress r 

Kumegawa I Nahagawa 5 0.045 

Kumegawa II tf 4 0.036N 

0.069E 

Tahemaru I It 4 0.093 

Tahemaru II tt 4 0.057 

Nishinorauja Tt 4 0.115 

Komagoma IÎ 4 0.037 

Senjyu TT 4 0.069 

Totsuha tt 4 0.048 

Honrauracho tr 4 0.095 

Ishihawacho tt 4 0.050 

Gotohyji It 4 0.038 

Taishido tr 4 0.036 

Kyodo tt 4 0.071 

Number Five Meehan and Blume 1 0.047 

Number Seven tr 2 0.08N 

0.07E 

Number Eight tr 2 0.124 

Number Nine tt 2 0.077N 

0.094E 

Number Ten tt 3 0.079N 

0.076E 

Aoyama Kanai and 3 0.042N 
Yoshizawa O.llOE 

Tahaba tt 4 0.070 
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elastic vertical stiffness (defined as the vertical force per 

unit area in a soil mass to cause unit vertical deflection) to 

range from three to ten Kg/cm . He further suggests that the 

corresponding coefficient of rocking stiffness can be taken as 

twice the vertical stiffness value. The coefficient of trans-

lational stiffness is suggested to be half the vertical value. 

The range selected for this investigation, based on the infor-

3 nation outlined above, is from one Kg/cm (considered as a very 

3 
soft foundation) to ten Kg/cm (considered as a stiff founda-

3 tion). The range is further extended to 100 Kg/cm (to repre

sent pile systems) and beyond to represent conditions approach

ing good, solid rock. Using these unit properties integrated 

stiffnesses are obtained by multiplying by the foundation con

tact area for the translational value and by multiplying by the 

second moment of the contact area about the horizontal axis 

through the foundation centroid and normal to the plane of 

rocking for the rotational value. 

E. Foundation Damping 

Foundation damping comes from two sources, by radiation of 

energy away from the structure in the soil wave induced in the 

soil by structure motion and by inelastic behavior of the soil 

mass itself- Whitman (43) states that the radiative contribu

tion is greater for horizontal translation than it is for rock

ing motion. The inelastic soil action contribution does not 

appear dependent on type of motion but is known to be a function 

of soil type and ground moisture conditions. Little quanti-
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Barkan (1) tabulates experimentally determined damping 

values and discusses the effect of partial foundation embed

ment. His damping values for exposed foundations range from 

five to twenty percent. Where partial embedment is featured 

Barkan indicates that damping values as high as three and one-

half times this amount have been obtained. 

Sufficient information does not appear yet available to 

permit evaluation of the damping developable by any specific 

foundation design. Presently available information does indi

cate that foundations do have the capability to develop large 

amounts of damping, however, and because of this fact the foun 

dation damping in this study was varied through a range from 

two to forty percent. Information of a quantitative nature 

will, of course, eventually be available and may even enable 

some control by the foundation designer of foundation damping 

properties. 

Conversion of percentages of critical damping to usable 

damping coefficients for this investigation, as with the strue 

tural damping, follows the technique of Lycan and Newmark (24) 

The rotational damping coefficient is selected to be propor

tional to the circular frequency of the foundation rigid strue 

ture translational mode. 
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VII. ANALOG COMPUTER ANALYSIS 

A. Forcing Function Development 

In any investigation of structural response to earthquake 

ground motion it is necessary to specify precisely what consti

tues earthquake ground motion. This problem has no complete 

answer at present and is, in fact, the current topic of much 

research by earthquake investigators. Two currently considered 

general approaches to the problem of simulating earthquake 

motion are the probabilistic approach and the deterministic ap

proach. In the probabilistic approach the earthquake is 

treated as a random process. That an earthquake is inherently 

somewhat random in characteristic is obvious when one notes the 

variability of earth stratum an earthquake shock wave will 

move through on its passage to any specific surface location. 

However, the specific type of random process most suitable for 

earthquake representation is still widely debated. Bycroft (7), 

by way of example, proposes the use of a "white noise" having a 

2 4 constant spectral density of 0.75 ft /sec /cps with a duration 

of thirty seconds. 

More successful from the standpoint of past application, 

however, has been the deterministic approach. In this approach 

actual or simulated earthquake records are used as forcing 

functions in conjunction with a modal or numerical structural 

technique. 

Both the probabilistic and deterministic approaches have 
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their merits and demerits. It was the choice for this investi

gation to use the deterministic approach due to its extensive 

current use in actual practice. Having once decided to use 

this approach criteria were then needed for selection of a 

specific forcing function and to gage its acceptability. The 

only criteria decided upon were a) that the response spectra 

from the forcing function would reasonably simulate in general 

shape and magnitude the averaged response spectra of a typical 

earthquake (El Centre) and b) that the response spectrum from 

the forcing function would be of smooth shape in order to avoid 

the difficulties that a irregular shape of spectrum would pre

sent in the analysis. The development of a suitable function 

then proceeded in a "cut and try" manner until a function 

meeting the above criteria was achieved. The analog setup used 

to generate the half-cycle sine function finally decided upon 

is shown in figures nine and ten. 

The response spectrum for the chosen function (or any other) 

can be developed from the following mathematical considerations. 

Consider a single free mass, one degree-of-freedom oscillator. 

The equation of motion of this system for ground motion is 

Vl C^(X^ - Xq) + K^CX^ - Xg) = 0 (7.1) 

or 

MiXi + C^X^ + K^X^ - G^Xq - K^XQ =0 (7.2) 

Making the substitution u = X^ - Xq and, likewise, 

u = X^ - Xq and u = X^ - Xq yields 
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+ C^u + K^u = -XqM^ (7.3) 

2 Rearranging and substituting w = — and 2 u) f = ̂  yields 
Ml 

u + 2 u) fu + Gu^u = -Xq (7.4) 

From the preceding development it is observed that the 

ground displacement has been transformed into an equivalent 

second order ordinary differential equation with the ground 

acceleration as a forcing function. Now considering again the 

equation of motion of the system, it is to be observed that it 

can also be written in the following equivalent form: 

MXi + C^u + K^u B 0 (7.5) 

Noting that at the relative maximum displacement u = 0, 

the equation at u „ then reduces to max 

MXi + K^u^ = 0 (7.6) 

or 

= - tu u^ (7.7) 

The value of associated with u^ is designated the spec

tral acceleration. The spectral velocity associated with this 

apparent harmonic motion can likewise be obtained by noting 

that for simple harmonic motion 

"m = ""m (7-S) 

From the above considerations, a tabulation of maximum 

relative displacements when the single degree-of-freedom system 

is subjected to an accelogram forcing function is seen to yield 
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spectral acceleration, velocity and displacement. The analog 

setup used to obtain these parameters is shown in figure eleven. 

The spectral displacement for this function and, for comparison, 

a generalized El Centro spectrum are shown in figures twelve 

and thirteen respectively. The El Centro and the selected 

forcing function spectra do not coincide completely except in 

general shape and frequency range. However, there is no neces

sity that they do coincide and, in fact, comparison of any two 

earthquake spectra would be expected to show a similar varia

tion. It can be observed that the chosen acceleration function 

does, in fact, meet the criteria previously set forth, however. 

B. Analog Equation Formulation 

In section V the general two free mass equations are pre

sented in the following forai: 

MgXg + 9 + CgXg - + KgXg - KgX^ = -M^Xg (7.9) 

Vl C^X^ - CgXg + CgX^ + K^X^ - KgXg + K^X]^ = -M^Xg 

Rearranging these equations so that the highest ordered 

derivative is alone on the opposite side of the equation and 

dividing through by its coefficient yields the following 

equations : 

*2 =- (*2 - ^l) - - ̂ l) " ̂ 2® • ̂ 0 (7.10) 
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Output forcing function 

Ten second index marks 

Figure 9. Analog schematic for function generator 
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IC(R)  OP(R) 

•O CI Ù:L 

Figure 10. Analog schematic for function generator switching 

logic 
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Figure 11. Analog schematic for response spectrum determination 
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Figure 12. Displacement response spectrum, simulated earth

quake ground motion 
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Figure 13. Average displacement response spectrum, El Centre 

earthquake. May 18,:1940 (N-S direction) 
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Xq 

Inputing Xq as a forcing function into the analog computer, 

the X^, X^ and X2 responses can be observed, all in terms 

of system voltages. To make the solution compatible with the 

EAI 8800 analog computer magnitude and time scaling are required 

as a preliminary step, however. This can be accomplished using 

the relationships 

X^ = 3y^, ^2 = Py2, ® and T' = at where y is an 

analog voltage, 7^ is the analog time, and 3, Y, "9^represent 

scaling constants. Differentiating these expressions with 

respect to time yields 

Now substituting these relationships into the previous two 

mass system equations yields 

(7.11) 
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. K, 
py" = - H^csyj^) - + ̂ (CPy2> - (eyi)] + ̂  

1 "1 

(Pyg) 
[(By?) - Oy-i)] 5— 

Y0i = _ 5: (Y?) - jCve^) _ 

(M^H^ + Ig)* ^^2^2 •*• ^0^ '^^2^2 ^0^ 

• # • # 

(By?) 5 2 (Byg) 
0/^2^2 + lo)* 

Considering machine capabilities and the particular range 

of magnitude variables and the time variation associated with 

the type of problem being solved, it is desirable to make 

Q? = 10, 3 =0.10 and Y = 0.001. Substituting these values into 

the equations and dividing through by 3 and Y yields: 

Cg Kg yg 
^2 = - tcmt (^2 - ^i) - imc (^2 - ̂ 1^ • ~n5— Tm 

^ ^ (7.12) 

C^y^ K^y^ Cg • • ^2 ^0 

^1 ~ T5M]^ lOOM^ TOM]^ (^2 ~ ^1^ lOOM^ (^2 ~ ^1^ ~ TÔÔ 

•e" ^ ^ VÎ '•°°"2»2y2 

lOCMgHg^ + Iq) 100(M2H2^ + IQ) + Ig 

^2^2^0 

• + Iq 

Considering the controlling values of the data from Appen

dix B yields the following set of equations with bounding 

values : 
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= - (gj::) c;, - y,) (y, - y,) - (h:g) 

^0 
TOT 

;• _ r0.0325^ ' r 0.1500^ ^r0.0240^," ' X 
V2.1020> "\17.5000Vyi V0.4260̂  ̂ 2̂ " 

" _ r0.0234^ '"1 r 0.4000^1 ro.sooo^ " 
® ~ ~ V3.0280y ® "Vl4.3000y® "VO.7100^^2 

_ ^0.3000^ y" 
^0.710o; 

The analog schematics for the setup of this set of 

equations are shown in figures fourteen, fifteen and sixteen. 
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Figure 14. Analog schematic for rocking motion 
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Figure 15. Analog schematic for first mass motion 
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Figure 16. Analog schematic for second mass mot 
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VIII. GENERAL MATHEMATICAL ANALYSIS 

A. Review of Methods 

The method of solution most commonly used and perhaps 

presently best adapted to the solution of multidegree of free

dom problems is the modal analysis method. The principle under

lying the usefulness of this method is the fact that the dif

ferential equations of motion are decoupled when the displace

ments of the system are expressed in terms of natural modes of 

free undamped system vibration. Consider the equations of 

motion of a undamped multimass system with rocking. From 

section V equation (5.20), these equations become: 

" ̂ -l\-l"^-A-1 ® 

Kafa - KaKN-i 

-KgX, + (Ki + = -MiXi 

N 

(8.1) 
N 

M.H.X. 
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Assuming a solution of the form 

and 9 = ̂  

exists, these identities are substituted into the above equa

tions to yield 

Vn - VN-1 = 

-KgYg + (K^ + K2)y^ = (M^y^)u:^ (8.2) 

N 

Kr$ = +y uu^ 

i=2 

N 

+/ M-H.y.uj^ 
'Z 1 1. 1 
i=2 

+ 

This set of equations can be expressed more compactly in 

matrix form as 
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KY = (D 'MY (8.3) 

where 

Y = [y^y y 
N-l' ̂ N-2' • Yn, 8} 

K = -Km +*% + KN-l 

K 

and — 

M = 

VN 

&-1 

N + 

y~ Mi»i 
i=2 

Rearranging then yields: 

[K - w^M]Y = 0 (8.4) 

This set of homogenous linear equations can only have a 

solution if the determinant of the coefficients vanishes. Upon 

2 expanding this equation an N+1 order equation in uj is obtained. 

2 In turn, for each value of m there exists a particular set of 

values called Y^. Denoting two such vectors Y^ and Yj, their 

corresponding œ's as and cuj « Using the initial matrix 
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equation yields : 

KY^ = (8.5) 

KYj = (8.6) 

Transposing equation (8.5), postmultiply by Yj and pre-

T multiplying equation (8.6) by yields: 

Y^^K^Yj = (8.7) 

T Noting that M and K are symmetric matrices, K = K and 

T M = M. These equations then become: 

Yj_^KYj = uy_^Yj_'^MYj (8.8) 

T 2 T 
Yj_^KYj = Wj Y^^MYj 

Observing that the left hand sides of the two equations 

(8.8) are equal, the right hand sides must also be equal. 

Equating then yields: 

(m^^ - Wj^)Y^^MYj = 0 (8.9) 

2 2 Since and Wj are not, in general, equal it follows 

that: 

Yi^MYj =0 (8.10) 

Restating, it is to be noted that the eigenvectors are 

2 orthogonal with respect to the weighting matrix M. If u)^ = 

m and Y^ = Yj, = 0 and Y^^MY^ / 0. Defining 
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and dividing by yields: 

(8.11) 

or 

(8.12) 

Letting the quantity be denoted as the unit vector e-
Li X 

w; 

the equation can be rewritten as 

(8.13) 

Vectors that satisfy this equation are convectionally re

ferred to as normalized vectors or unit vectors. Combining the 

unit vectors columnwise into a matrix designated the Q matrix, 

defined as [e^, e^, ... e^^^] where e^ is further defined as 

[e^ i' i* *** ^+1 i ) with these elements corresponding to 

form (8.13) then can be expressed in the more compact form: 

Returning now to equation (8.5) and dividing by yields 

All possible relations of the 

Q'^MQ = I (8.14) 

KY. 1 _ (8.15) 
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or 

Ke^ = ujj, MSj. (8.16) 

Combining all N+1 e^-vectors into a more compact form 

yields 

(8.17) KQ = MQ/y 

where 

-

uu. 

uu 0 

U) 
N+1 

Premultiplying by Q yields 

q\Q = (8.18-8.19) 

Note that it was previously shown (8.14) that Q MQ = I. 

Substituting this result into (8.18) yields 

Q KQ =A ( 8 . 2 0 )  

with these identities, (8.20) and (8.14), established, 

consider again the basic equations of motion. They are ex

pressed in the matrix equation form as 

MX + CX + KX = F (8.21) 

We now attempt to express the solution vector for this 

equation as a linear sum of the modal vectors as follows: 
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1 

^1,1 ®1,2 ®1,N+1 

= 

* 

P 2 • • • 

• 

^N+l 

0 ®N+1,1 ^N+1,2 ^N+1,N+1 

( 8 . 2 2 )  

This can be expressed more compactly as 

X = QP 

where Q was as previously defined and P is defined as the vector 

P = { p^, p^, Pn+i} *^th elements p^. Substituting in for 

X in (8.21) its equivalent QP results in 

MQP + CQP + KQP = F (8.23) 

Premultiplying by Q yields 

Q^MQP + Q^GQP + Q^KQP = Q^F 

Now for the undamped case this equation reduces to 

Q'^MQP + Q\QP = Q^F 

(8.24) 

(8.25) 

Applying the relationships (8.14) and (8.20) yield 

P +/V. P = Q^F (8.26) 

This matrix equation is a decoupled set of simultaneous 

linear differential equations due to the fact that^V is diag

onal. Thus, the values of p^ can be determined by the set of 

equations 

Pi "i^Pi = e^^F (8.27) 
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%+l *N+1 ^N+1 ^+1 ̂  

It is to be observed that the right hand side of each of 

the above equations is a scalar resulting from the product of 

N+1 by one and one by N+1 sectors. Given the p^ values that 

result from a solution of this set of independent equations the 

values of X^'s can be determined according to equation (8.22). 

The p^ values that represent the solution of these equations 

are, of course, solutions of ordinary differential equations 

with time as the independent variable and a forcing function 

(e^ F) that is a scalar multiple of the ground motion accelera

tion. Inasmuch as ground motion acceleration due to seismic 

disturbance is of erratic, random character, the determination 

of p^ values (which are a function of time) and the vector 

combination of modal shapes weighted by these values to obtain 

displacements requires an extensive computerized solution. For 

typical problems it is customary to follow, therefore, the ap

proach suggested by Clough (8) and others. 

It is suggested by Clough that a good estimate of the max

imum value of structural displacement is obtained by combining 

the modal vector displacements (i.e. the e^ p^ values where e^ 

is a vector) in a suitable manner. For a small number of modes 

(two or three) a absolute sum is recommended as the most appro

priate combination. However, where the number of modes is 

large a square root of the sum of the squares of modal maxima 

is suggested. 
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T ' Damping can be considered by retaining the Q CQP term of 

T equation (8.24). However, to achieve decoupling this Q CQP 

term must now also be diagonal. Otherwise it can be seen that 

the ith new equation of the set analogous to the (8.27) set 

would contain pj terms where i is not equal to j. Mathemati

cally this is equivalent to requiring that 

Q^CQ = D (8.28) 

where the matrix D is of order N+1 with diagonal form. 

Since the diagonal terms of this D matrix are numerical 

coefficients they can be expressed as the w for the corresponding 

mode times a factor, 2f, where f is numerical constant selected 

such as to make 2u\f^ equal to the corresponding D matrix entry. 

In such a manner each diagonal entry of the D matrix (all off 

diagonal elements are zero) is replaced by a numerically equiv

alent 2w^f^ term with f so adjusted to make 2w^f^ = d^^. We 

have then an array of diagonal 2'A^f^'s, one for each mode. 

From forced harmonic vibration testing of structures it is 

possible to observe both structural respones during forced vibra

tion and decay of the structure's vibrational amplitude after 

termination of force application. By such testing it is pos

sible, at least in principle, to obtain frequencies and modal 

damping values for the undamped modes of small damped structures. 

If such modal frequencies and modal damping values, then, are 

obtainable by test we have, in effect, achieved a knowledge of 

2 both the wand 2w^f^ values for the equations 
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P + EP +/VP = Q^F (8.29) 

Note that when D, 9 and F matrices are known this 

equation set yields directly a set of values. 

By having a knowledge of these matrices such as is, in 

principle, obtainable from the dynamic testing described above, 

one can also proceed to determine fundamental structural damp

ing coefficients that are usable in an analog computer to deter

mine the response of the same structure under dynamic loading. 

This can be achieved from the following considerations. Pre-
rr-l 

multiplying (8.29) by Q yields 

m— 1 . • T" ̂ • T** ̂  
Q P + Q DP + Q P = F (8.30) 

Comparing (8.30) and (8.23) it is obvious that the follow

ing equalities must be valid if the equations of (8.30) are to 

be reducible to their original fomi 

rp-l 
= MQ (8.31) 

and 

T~^ Q D = GQ (8.32) 

Substituting (8.31) into (8.32) yields 

MQD = CQ 

2 This matrix equation is an array of (N+1) simultaneous equa

tions in which the C--'s are the only unknowns. Postmul tip lying 

T by Q yields 

C = MQDQ"^ 
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Thus, the C^j elements of the C matrix are then obtained by 

equating corresponding coefficients. 

It is to be emphasized that the above procedures are valid 

only where damping is small and/or where the damping coeffi

cients have a special relationship to the mass and/or stiffness 

coefficients. The significance of this statement can be more 

fully appreciated by considering the special cases where the C 

matrix elements are proportional to the mass or stiffness matrix 

elements or to a linear combination of the elements of both of 

them. 

First, assume that 

C = YM (8.33) 

where Y is a proportionality factor. Using the equations of 

T motion (8,23) and multiplying by Q yields 

Q^MQP + + Q'^KQP = Q^F (8.34) 

T 
Substituting YM for C and recalling that Q MQ = I yields 

P + Y IP +A-P = (8.35) 

The modal equations then become 

Pi + YPi + = e^^F (8.36) 

* * * * * * * * * * * *  

PN+1 ^^N+l \+l PN+1 " ̂N+1 ̂  

Observing that Y is a constant and, also, that D can be 

substituted for YI if all 2wLf^'s equal Y, it is seen that 

requiring C = YM is equivalent to specifying the fraction of 

critical damping in each mode to be inversely proportional to 
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the modal frequency of that mode. Noting that C = YM also 

requires the form of the C and M matrices to be identical, it 

can also be seen by going back to basic equation formulation 

that this is achievable only when system damping is absolute. 

That is, the system is idealized by assigned damping effects 

only between the individual masses and the foundation. 

In an analogous manner, it can be shown that requiring 

C = &K (8.37) 

where 3 is a proportionality factor is equivalent to both 

requiring modal damping to be directly proportional to system 

frequencies and specifying the physical assignment of dampers 

to be such as to assign damping to the interfloor motion of 

masses (relative damping). 

From the above paragraphs it can be seen that specification 

of damping as being of a proportional type is mathematically 

appealing. However, for damping, in structures most experimen

tal evidence indicates it to be frequency independent rather 

than being directly or inversely proportional to frequency. In 

addition, the problem that is the subject of this research 

investigation is one where the foundation stiffness can be con

siderably smaller than structural stiffness whereas the founda

tion damping can be considerably greater than the structural 

damping. Such a situation is extremely non-propoftional. 

Where the foundation damping is high with respect to the 

structural damping and where, for the specific problem, the 

foundation mass is, also, large with respect to structural mass. 
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one might be tempted to apply a proportional damping formulation. 

However, the associated implication that modal damping is in

versely proportional to modal frequency shows this approach to 

be of questionable validity, also. 

B. General Solution for Two Free Mass System 

The set of equations of motion for the general two free 

mass system have the following form as developed in section V. 

MX + CX + KX = F (8.38) 

In finding the free vibrational periods and modes, the 

forcing function and damping matrices are disregarded and, as 

indicated in the previous section, a solution of the form 

X^ = y^e ^and 9 = §e^'^^ is sought. Making the substitution 

yields 

-("^(Mgyg + MgHg*) + Kgyg - K^y^ = 0 

-uf(M^y^) + (K^ + K2)y^ - K^y^ =0 (8.39) 

+  I g S )  +  =  0  

or, rearranging, 

+ K2)y2 - (K2)y^ - = 0 

-KgYg + (-")^M^ + + K2)yi =0 (8.40) 

-A2H2y2 + [-cu^(M2H2^ + IQ) + =0 

Equating the determinant of the coefficients equal to zero 

yields the auxilary equation 

+ Kg) - (w^M^ + + K2)Y + -(aJ^M2^H2^)(-^^Mj^ + 
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+ Kg) = 0 (8.41) 

where Y = 

Expanding this expression yields 

+K2M^lQ)w4 _ + K^KgMg + 

. (8.42) 
- KiKglo)* + = 0 

Note that the frequency equation is of the third order in 

2 2 w . The calculation of the values and the associated eigen

vectors follows in a straight forward manner. 

If Iq is neglected as being small, as is often times the 

case, the equation reduces to 

(VA "• + (-K^K^Mg + 

+ =0 (8.43) 

It can be seen from the above frequency equation that 

neglecting local moments of inertia of system masses reduces 

the number of degrees of freedom of the system by one when 

rocking motion is considered. This is not the case for a no 

rocking situation, however, since 9 does not enter into the 

translation-only development. 

The significance of this reduction in degree-of-freedom can 

be seen using the two mass case as an example. The equations 

of the rocking-only two mass system are 
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MgXg + 9 + MgXg + CgXg + =0 (8.44) 

+ %x' + 4. IqV + cj + K^e =0 

Neglecting damping and Iq terms and solving for ^ in the 

second equation yields 

e = _ ( 2 2 2 2_2_0 . ) (8.45) 
2 

MgH/ 

Substituting for ® in the first equation of the previous, 

set yields 

MgXg - + ̂  + ^ Q) + MgXg + KgXg = 0 (8.46) 
'2 "2 

and, rearranging, 

^2 KgHg ® (8.47) 

K H 
9 = Xg (8.48) 

Making the substitutions X^^ = y%e^^^ and ® = *e^^^ as 

before yields the alternate equivalent relationship 

Kj. 

Thus it is seen that the yg motion (in an undamped system) and 

the $ motion are directly related when Iq is neglected. For 

the specific case just used (the undamped two free mass no 

translation case) when Iq is neglected the system is, in reality, 

a one degree-of-freedom system with the relationship between 9 
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and Xg as previously expressed. 

By resubstitution back into the first equation of (8.44), 

it can be shown that there results the differential equation 

• • ^.2 Xpj 
Xj + 5 X = - 5 (8.49) 

ri + «2 K2]2 [1 + «2 ^2] 

The natural frequency of the one degree-of-freedom fixed 

base system retains its one degree-of-freedom character but the 

natural frequency and the effective ground acceleration have 

been modified by the factor 

For this one degree-of-freedom system the change in system 

period as influenced by foundation stiffness and structure 

height is shown in figure seventeen. 

C. Modal Analysis Solution for Multimass Problem 

The modal analysis method previously discussed is used in 

this part to evaluate the influence of foundation rotational and 

translational stiffness on structural response for a specific 

case as an example of the method. The results from the example 

along with those from a couple of other cases were also useful 

in checking the validity of the computer program developed to 

automate the calculations. 

Consider the general two free mass problem. For the 

general case it has been previously formulated (see equation 
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5.8) as 

*2 
0 

0 M 

0 

M2 0 

0 
^1 

0 0 

MgHg -K2 
0 

+ 
-K2 Kl+Kg 

0 

V 0 0 

1 

^1 

C
D
 

1
 J 

0 

0 

MgHg 

(8.50) 

or, making the standard substitution and neglecting the forcing 

function, (8.51) 

M2 0 

0.2 0 M 

% 0 

MgHg 

lo-MgHg 

2̂ Kg -Kj 0 y 

yi = -Kg K̂ +Kg 0 y 

§ 

o
 

o
 

Take now as an example case a type I structure with both 

rocking and translational foundation freedom and with a fairly 

stiff foundation. The computer output for this example is 

shown in Appendix A. Substituting the values for mass and 

stiffness as given in Appendix A yields 

(JU 

591 0 

0 1880 

76900 0 

^2 

yi 

§ 

76900 

0 

25.0x10* 

^
 1 

to
 

1 

yi II 

$ 

1.58 -1.58 

-1.58 4.40 

0 0 

(8.52) 

0 

0 

10,000 
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Obtaining the inverse for the mass matrix and premultiply 

the equation through by this matrix yields 

^2 

U)^ yi 
= 

§ 

4450 

-845 

- 13.75 

-4450 

2350 

- 13.75 

-86,900 

0 

667 

= 356.92 = 3.008 

Y, ={0.92051, 0.39003, 0.02346} 

*2 = 1287.35 = 5.713 

^2 

^1 
$ 

(8.53) 

Yg = {0.78184, 0.62377, -0.00349} 

"'3^ = 5820.60 ^3 = 12.148 

Y3 = {0.97163, -0.2347, - 0.003211 

T 2 Using the relationship Y^ MY^ = (a scalar) from equa-

2 tion (8.11) a matrix of values is computed. It is 

439.7297 

0.0005 

- 0.0007 

0.0004 

977.3923 

-0.0001 

0.0000 

-0.0019 

17870.3700 

(8.54) 

T 2 where the value in the first row, first column is Y3 MY3 = L3 , 

T 2 the value in the second row, second column is Yg MYg = L2 

T 2 the value in the third row, third column is Y^ MY^ = . The 

off diagonal elements are formed in an analogous manner. Note 

that the off diagonal elements are of zero value to within the 

accuracy of the calculation. 
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Dividing each vector of (8.53) by its corresponding nor

malization factor yields 

e^^ = [0.00689, 0.00292, 0,00018} 

eg = [0.02500, 0.01995, -0.00011} (8.55) 

eg = [0.04636, -0.01119, -0.00015} 

Referring to equation 8.25 and noting that the forcing 

function matrix is expressed as: 

F =[MgXÔ M^Xq } (8.56) 

The forcing function for the first decoupled participation 

factor equation is expressible as 

Xq (8.57) 

[0.00689 0.00292 0.00018] 591 

1880 

(591)(130) 

or, performing the indicated multiplication, 

e^Tp = [(0.00680)(591) + (0.00292)(1880) + (591)(130) 

(0.00018)]Xq = 23.051XQ 

Likewise, 

and 

eg^F = 43.706XQ 

e^^F = 5.423XQ 

Modal damping percentages appropriate to the type of struc

ture are now identified and the corresponding response spectrum 

curves selected. The maximum structural distortion in each mode 

(which is the same as the original Xg coordinate of each mode) 
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Figure 18. Mode shapes for two free mass example problem 
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is then obtained by securing from the selected spectrum (in 

this case the zero damping curve of figure thirteen) the struc

tural displacement value corresponding to the frequency of the 

mode, multiplying this value by the corresponding e^ F coef

ficient, and multiplying the resulting product by the relative 

modal structural displacement. This procedure yields the fol

lowing maximum modal structural distortions for each mode for 

the zero modal damping case. 

First mode distortion: 

(0.105)(23.051)(0.0058 - 0.00292) = 0.00989 

Second mode distortion: 

(0.049)(43.706)(0.0250 - 0.01995) = 0.01110 

Third mode distortion: 

(0.021)(5.423)(0.04636 + 0.0119) = 0.00649 

Taking the sum of the absolute values of these modal distortions 

yields a total structural distortion of 0,02735 feet. Computing 

a square root of the sum of the squares results in a total struc

tural distortion of 0.01615 feet. 

In summary, in this section (Section VIII G) a specific 

example of the general two mass problem was solved step-by-

step to illustrate the procedures used. The general FORTRAN 

listing to solve this problem by the digital computer is shown 

in Appendix A. A typical output results sheet, specifically 

the one for the particular example chosen to illustrate the 

solution procedure, is also shown in Appendix A. 
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IX. RESULTS 

A. General 

In this section the results of parameter studies involving 

variation in foundation stiffness and damping are presented. 

As indicated in the program of investigation a series of five 

containment structures, representing the range of types and 

sizes of nuclear containment structures currently being placed 

into service, was selected and structural parameters suitable 

to them were calculated from available data. Investigation was 

made of the effect on modal frequency and structural displace

ment and response as type of foundation, foundation stiffness, 

foundation damping and structural mass and moment of inertia 

were varied. 

The results of the structural deformation computations are 

expressed in the form of structural displacements (defined as 

the maximum relative displacement between superstructure levels, 

i.e. maximum Xg in figure seven) and structural response (de

fined as the ratio of maximum relative displacement to the dis

placement of the same structural model with a fixed base). 

B. Foundation Stiffness Influence on Modal Frequencies 

The modal frequencies of undamped free vibrational modes of 

two free mass structures have been determined for the I^ equated 

top mass cases studied in this investigation. For review of 

the method used to compute these frequencies the reader should 

refer to the previous chapter. As typical of the influence 
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that foundation stiffness variations have on the modal frequen

cies of foundation-structure lumped mass systems the modal 

frequencies (\'s) of such systems are graphed as a function of 

the ratio of foundation-to-structural stiffness (K^/K2 or K^/ 

Kg as applicable). The change that occurs in these modal 

frequencies for a type I structure with either a translational 

or rotational foundation for a change in foundation stiffness 

is shown in figure nineteen. The corresponding change that 

occurs in the modal frequencies of the companion taller type 

II structure is shown in figure twenty. 

The effect of variation in foundation stiffness on the 

combined constant K and variable K structures has also been 
r r 

calculated. For the combined type I structures the results are 

graphed in figure twenty-one. For the combined type II struc

tures the results are correspondingly graphed in figure twenty-

two. 

The use in these figures and subsequently of the expression 

"Rotational Structure" refers to a structure where the founda

tion is translationally very stiff and whose base translates 

along with the ground translation. There is, however, rota

tional or rocking action. The use of the expression "Transla

tional Structure" refers to the opposite case where the struc

ture's foundation is rotationally very stiff and the only 

motion in the system is one of translation. The "Combined Strue 

ture" term is used to denote a structure where both foundation 

translation and rotation can occur. Two subcases of the "Com
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bined Structure" category have been investigated. They are the 

situations a) where the rotational stiffness is constant (re

ferred to as the constant case) and b) where the rotational 

stiffness is proportional to the translational stiffness 

(called the variable case). 

In the case of combined constant K structures a value of 
r 

10 X 10^ ft-kips was selected as being an appropriate value for 

the rotational stiffness of the type I, II, III and IV struc

tures. A value of 30 x 10^ ft-kips was selected as the 

value for the type V structure. The above values were chosen 

on the basis of their previous usage in containment structure 

designs that included pile foundations. 

For the case of combined variable structures the 

chosen was one that was 3550 times the value of the founda

tion for type I, II, III and IV structures. For the type V 

combined variable K structure a value of 6120 times the K, of 
r 1 

the foundation was selected. These values were selected to be 

representative of the average relationship between soil trans

lational and rotational stiffnesses (1). 

C. Foundation Stiffness Influence on Structural Response 

1. General 

Using the modal analysis approach described in section VIII 

and the undamped linear approximation to the El Centro response 

spectrum shown in figure thirteen, absolute sum of modal maxima 

and square root of the sum of the squares of modal maxima struc

tural displacement and structural response values were calcu-
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lated by a digital computer program (see Appendix A) for a 

number of structural types and variations in foundation freedom 

characteristic. For each specific structure type (Type I, II, 

III, IV or V) and foundation characteristic (translational, ro

tational or combined) a series of fourteen foundation stiffness 

values were selected. These foundation stiffness values were 

so spaced as to cover the entire range of possible useful foun

dation stiffnesses. Individual maxima referred to above were 

then obtained for each of these selected stiffness values. 

The results of these confutations in the form of a sum of 

modal maxima structural displacement and a sum of modal maxima 

structural response are graphed as a function of the appropriate 

stiffness ratio (K^/K2 or K^/Kg). The graphed results are in 

the form of lines connecting data points. No attempt was made 

to smooth or fit the resulting data to a curve. 

An outgrowth of the two free mass analytical investigation 

of section VIII was the appearance, for rocking motion, of the 

2 parameter K^/H K^. Since occasionally results obtained for the 

rocking action of structures are expressed in terms of this 

parameter, it may be useful to give at this point the relation

ship between this parameter and the K^/Kg parameter used in this 

study. For the type I and III structure a 10^ value of K^/Kg 

2 corresponds to a K^/H Kg value of about 6.0; for the type II 

2 and IV structures it corresponds to a K^/H Kg of about 1.5; and 

2 for a type V structure it corresponds to a K^/H Kg value of 

about 2,0. For the type I and III structures Hg is 130 feet. 



www.manaraa.com

98 

For the type II and IV structures is 250 feet. Likewise, 

for the type V structure is 140 feet. 

2. Structures with transiational freedom 

The influence of foundation stiffness on the response of 

structures with translational foundations is shown in figures 

twenty-three through twenty-seven. In figure twenty-three the 

maximum structural displacement developed in a type I structure 

when subjected to an El Centre type ground motion is graphed as 

a function of the ratio of foundation translational stiffness 

to structural lateral stiffness. The four curves shown in the 

figure refer to four different assumptions on the partition of 

mass in the structure, the details for selection of which are 

described in section VI. In figure twenty-four essentially 

the same information is shown. This figure relates the stiff

ness ratio (K^/Kg) to structural response rather than struc

tural displacement. 

In figures twenty-five and twenty-six the same sets of 

ordinates and mass assumptions are used to describe the effect 

of ground motion on a type II containment structure. In figure 

twenty-seven the structural response of three containment struc

ture types, types III, IV and V, are graphed as a function of 

stiffness ratio. For these structures no attempt was made to 

discern the effect of various mass partition assumptions. The 

I^ equated top mass partition was used exclusively. 

3. Structures with rotational freedom 

The influence of foundation stiffness on the response of 
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structures with rotational type foundations is shown in figures 

twenty-eight through thirty-two. Specifically, in figure 

twenty-eight the maximum structural displacement developed in 

a rotationally based type I structure when subjected to an El 

Centre type ground motion is graphed as a function of the stiff

ness ratio (K^/K2). The four curves in the figure again show 

the results obtained when the four different mass partitions 

are used. In figure twenty-nine essentially the same informa

tion, plotted in terms of structural response rather than struc

tural displacement, is shown. 

Figure thirty and thirty-one illustrate the effect of 

ground motion on a taller rotationally based structure, the 

rotational type II structure. Here again displacement versus 

stiffness ratio is graphed in figure thirty and structural 

response versus stiffness ratio is graphed in figure thirty-

one. In figure thirty-two the response of type III, IV and V 

rotational structures to the same El Centre ground motion is 

shown for the I^ equated mass partition. 

4. Structures with rotational and translational freedom 

Proceeding on to the physical situation where the founda

tion possesses both translational and rotational freedom (called 

the combined structure) the situation becomes somewhat more 

complex in as much as one is now dealing with a three degree-of-

freedom system with many different rotational/translational 

combinations possible. This problem can, in reality, be viewed 

as a function surface whose Z coordinate is structural displace-
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ment or structural response and whose X and Y coordinates are 

the translational and rocking stiffnesses of the specific 

foundation of concern. 

One such surface has been calculated completely using a 

coarse mesh and the El Centro ground motion for a type I struc

ture with equated mass partitioning. Two views of this sur

face are shown in figures thirty-three and thirty-four. The 

function surface for the type II, III, IV and V structures all 

have the same general shape of surface as this one shown for 

the type I structure. 

The function surface has been examined in more detail for 

each containment type for two subcases that are considered to 

have special relevance. They are the cases a) where the soil 

system foundation is such that a general proportional relation

ship exists between soil translational and rotational stiff

nesses and b) where the rocking stiffness is essentially con

stant but the translational stiffness may vary over a wide 

range. The first subcase is thought typical of a normal soil 

foundation. The second subcase is thought to apply to a 

typical vertical pile foundation where the rocking stiffness 

is a known constant value based perhaps on pile load tests and/ 

or the elasticity of the piles themselves. In this second case 

the translational stiffness may vary over a wide range depending 

on soil type, pile type, pile spacing, pile depth and pile 

batter. 

The containment structure with a foundation with both 
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translational and rotational freedom and a soil foundation of 

the proportional type is termed here after in the text and 

figures as combined variable structure. The results of the 

computations involving this foundation type are shown in figures 

thirty-five through thirty-nine. The ratio between foundation 

rotational stiffness and foundation transiational stiffness 

has been held constant at a value of 3550 for type I, II, III 

and IV structure and 6150 for the type V structure. The selec

tion of these particular values is based on an average relation

ship between compressive and shear stiffness reported in the 

literature (1) and consideration of the foundation areas in

volved. 

The maximum relative displacement occurring in a type I 

combined variable structure under El Gentro type ground 

motion is graphed in figure thirty-five as a function of stiff

ness ratio. This same information is, also, presented in 

figure thirty-six. However, in this figure the response ratio 

is graphed as a function of stiffness ratio over the range of 

interest. In figures thirty-seven and thirty-eight the same 

type information is given for the taller type II structure. 

Again note that for these four figures various mass partitions 

have been used. 

The influence of ground motion on the structural response 

for a range of foundation stiffnesses for the combined variable 

type III, IV and V structures has also been calculated. The 

results of these calculations for the I^ equated mass parti-
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tioning has also been calculated. The results of these cal

culations are graphed in figure forty-four. 

5. Omission of mass and moment of inertia 

In the previous calculations the base mass included 

the mass of equipment and structures internal to the contain

ment as well as a portion of the containment structure, itself. 

In like manner, the moment of inertia used in the calculations 

was the total moment of inertia of all masses, both internal 

and containment structure, about the base of the containment. 

The effect of omission of the mass and moment of inertia 

of internal equipment is of interest. The containment designer 

must many times complete the design before internal structures 

and equipment are accurately specified as to location and 

weight. It is, therefore, desirable to determine the effect 

on the dynamic response of the containment of neglect of the 

masses and moments of inertia of items which are normally 

attached to the containment's foundation mat. Figures forty-

five through forty-eight present the results of structural 

response calculations for a type II containment structure with 

various foundation freedoms where equipment and internal struc

ture masses and/or moment of inertia are not included in the 

mathematical model. In each figure the structural response for 

the same structure with internal mass and moment of inertia 

included has also been graphed to provide a reference for com

parison. 

Figure forty-five shows the effect of omission of mass and/ 
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or moment of inertia on the response of a type II structure with 

a translational foundation. The structural response is graphed, 

as previously, as a function of foundation stiffness ratio. 

Figures forty-six, forty-seven, and forty-eight show the result 

of omission of mass and/or moment of inertia on the structural 

response of rotational, combined variable and combined con

stant structures, respectively. 

D- Analog and Digital Undamped Structural 

Response Due to Sinusoidal Loading 

The damping phase of this investigation was accomplished 

through the use of an analog computer technique. To support 

the validity of the patched analog setup to be used in subse

quent damping studies, the analog program with zero damping was 

run with the selected sinusoidal ground motion input. The 

result, in terms of structural displacement, of this input for 

type I and II structures, varying foundation situations and 

varying degrees of foundation stiffness is graphed in figures 

forty-nine through fifty-four. 

For comparative purposes modal analyses were also made 

for the same structural models and using the same forcing 

function. The response spectrum for this ground motion forcing 

function is shown in figure twelve. The structural displace

ment using sum of modal maxima (upper bound), square root of 

the sum of the squares of modal maxima and differences between 

the modal maxima (lower bound) was obtained. The structural 

displacement results of these analyses are also graphed in 
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figures forty-nine through fifty-four. 

More specifically, figures forty-nine, fifty, and fifty-

one display the analog and digitally computed structural dis

placement values for the chosen band of stiffness ratios for 

type I translational, rotational and combined variable 

structures, respectively. Structural displacement values were 

obtained in the same manner for type II translational, rota

tional and combined variable K structures. These values are 
r 

graphed in figures fifty-two, fifty-three, and fifty-four, 

respectively. 

E. Foundation Damping Influence on Structural Response 

As described briefly in the program of investigation 

section the study of the effect of foundation damping was by 

analog computer. The type I and type II structures were se

lected as representative of the range of containment structures. 

These two types of structures were investigated for transla

tional, rotational and combined variable foundation condi

tions. For each structure and foundation combination, the 

foundation stiffness and damping were varied through a wide 

range. The maximum structural displacement for each of these 

cases due to the chosen sinusoidal application of ground accel

eration was developed. The results of these investigations are 

shown in figures fifty-five through sixty. For each case 

investigated the structural damping percentage was held to two 

percent for comparative purposes. 

The damping effect of various percentages of foundation 
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damping on the structural displacement of a type I structure 

with a translational foundation is shown in figure fifty-five. 

Likewise, the effect of foundation damping on a type II struc

ture with the same type of foundation is graphed in figure 

fifty-six. The influence of foundation damping on the struc

tural displacement of type I and type II structures with rota

tional foundations is graphed in figures fifty-seven and fifty-

eight and similar information on these structures where their 

foundations are combined foundations is shewn in figures fifty-

nine and sixty. 
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X. DISCUSSION 

A. Foundation Stiffness Influence on 

Modal Frequencies 

The usefulness of information regarding the undamped free 

vibrational modal frequencies can be observed by examination 

of response spectra such as the spectra shown in figures twelve 

and thirteen of this investigation. Referring specifically to 

figure thirteen as an example of a typical earthquake response 

spectrum it is observable that there exists a peak response in 

this El Centro undamped spectrum at around 0.35 cycles per 

second and a pronounced decrease in response beginning at about 

1.5 cycles per second. Such response behavior is typical of 

all earthquake response spectra although the locations of 

response peaks and marked falloff of response varies. Knowl

edge of structural modal frequencies, then, provides an indica

tion of how a particular structure will respond under seismic 

loading. Structures with modal frequencies in the vicinity of 

response peaks can be expected to show large response while 

structures with modal frequencies away from the zone of large 

spectrum response will be relatively unaffected. 

Considering specifically containment structures and their 

modal characteristics, the fundamental mode frequency of a 

fixed base containment structure is, in general, found between 

2.0 and 10.0 cycles per second. The structures identified as 

type I and type II structures for the purpose of this investi

gation have been calculated to have fixed base frequencies of 
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about 8.3 and 4.1 cycles per second, respectively. 

The general effect of altering the structural foundation 

from a bedrock or fixed base condition to that of a softer 

foundation can be seen from inspection of the curves in figures 

nineteen through twenty-two. A foundation approaching bedrock 

corresponds in these figures to K^/Kg and K^/Kg ratios of 

around 150 and 10^, respectively. Transition to a softer foun

dation results in a shift to the left on these curves. As can 

be noted from these curves any reduction of K^/Kg, for example, 

reduces higher mode frequencies. Reduction of ^ value 

below about 5.0 results in rapid reduction of first mode fre

quency, also. 

It can be seen from inspection of figure thirteen that 

modal frequencies of 2.0 and greater lie to the right of the 

response spectrum peaks. The reduction of frequencies as the 

structure is supported on a softer type of foundation, then, 

results in moving of the structure into a zone of increased 

spectrum response. One may, therefore, qualitatively expect 

that the structural response would increase as modal frequencies 

are reduced. This is not entirely the case, however. It must 

be pointed out that, as was developed in section VIII, the 

maximum modal response is a product of the response spectrum 

value times a fixed participation factor coefficient times the 

relative modal structural displacement. The mode shapes and 

hence the relative modal structural displacements vary as the 

relative magnitudes of foundation and structural stiffnesses 
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vary. The mode shapes can, therefore, physically be thought of 

as measure of transmissibility of force into the structure. 

The mode shapes show relatively greater modal displacement in 

the foundation as foundation stiffness decreases. This effect 

is one of contributing to decrease in structural response as 

foundation stiffness decreases. The nature of the result is, 

consequently, a combination of these conflicting influences. 

Turning now to a specific discussion of the information on 

frequency change found in figures nineteen and twenty, it is 

observable that at large K^/K2 ratios (K^/K2 > 100.0) the fun

damental frequency of the structure does not change. This can 

be interpreted as indicating that the structure is, for K^/K2 

values greater than 100.0, dynamically fixed based for the two 

degree-of-freedom situation considered in these figures. The 

higher frequency is in the range of 25 to 40 cycles per second 

which is out of the range of practical significance for earth

quake spectra. 

As the stiffness of the foundation (rocking or transla-

tional) is reduced the first mode frequency gradually reduces 

while the second mode frequency rapidly reduces at first. At 

about a K^/K^ ratio of 2.0, however, the second mode frequency 

levels out to a constant value and is unaffected by any further 

reduction in foundation stiffness. The reduction in foundation 

translational stiffness is slightly more effective in reducing 

the structural first mode frequency while rocking stiffness 

reduction appears slightly more effective in reducing the 
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second mode frequency. 

Reviewing the three degree-of-freedom systems with both 

foundation rotational and translational freedom the resulting 

modal frequency changes are depicted in figures twenty-one and 

twenty-two. The first and third modes of these systems (com

bined constant and combined variable K^) perform in a sim

ilar manner to the first and second modes of the previously 

discussed two mode systems. In fact, the first and second 

modal frequencies of the translational structure lie very close 

to the first and third modal frequencies of the combined vari

able structure throughout the entire range of K^/K^ ratios. 

The second mode of the three degree-of-freedom system 

behaves somewhat differently, however. For the combined vari

able case, at large K^/Kg ratios, the second mode frequency 

takes on a very large value showing the essentially fixed base 

quality of this system at large K^/Kg ratios. As the K^/K2 

ratio becomes smaller, however, this second mode frequency 

reduces rapidly and becomes closely parallel to the first mode. 

Going onto the combined constant case, the second 

modal frequency can be seen to become nearly constant at large 

K1/K2 ratios showing the essentially two mode character of this 

system at large K^/Kg ratios. As the ratio becomes 

smaller, however, this second mode frequency is seen to reduce 

rapidly at first and then become nearly constant again at K^/ 

K2 values of about 0.5 and below. 



www.manaraa.com

148 

To summarize the results of this section, it can be seen 

by the discussion that a rather significant change in the cal

culated value of modal frequencies can result when foundation 

properties are considered in. what heretofore was a fixed base 

structure. It is practically impossible, therefore, to obtain 

a realistic estimate of structural frequencies of containment 

structures without knowledge of the foundation on which it is 

being constructed. 

B. Foundation Stiffness Influence on 

Translational Structure Response 

It is to be noted in referring to figures twenty-three 

through twenty-seven that the structural behavior of all trans

lational containment structures when subjected to a bilinearly 

approximated El Centro spectrum are qualitatively the same. All 

structures exhibit a fixed base response at a K^/Kg ratio of 

200 (not viewable in the figures). The response rises monoton-

ically to a resonance response peak at a K^/Kg ratio of about 

5.0 and subsequently shows a large decline. At a K^/K2 of 

about 0.1 the response of the structure is down to about twenty-

five percent of its fixed base response. 

The responses of type I and type II translational struc

tures to another ground motion are shown in figures forty-nine 

and fifty-two. The response spectrum used to obtain these 

values is shown in figure twelve. The structural response to 

this alternate response spectrum is qualitatively quite similar 

to that response previously exhibited when the El Centro spec-
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truin was used. Both of these structures also exhibit a fixed 

base response at a ratio of 200, rise to resonance peak 

structural responses at a K^/Kg ratio of about 5.0, and show a 

considerable subfixed base response at a ratio of about 

0.01. A noticeable difference in response is the additional 

resonance peak at a K^/K2 r&tio of between 0.05 and 0.5. 

A comparison of structural response values achieved by each 

of these structures as each structure goes through its resonance 

is of interest. For all structures and both spectra all struc

tures show a maximum structural response of between 175 and 200 

percent of the fixed base response. This response is reached 

at a K^/Kg ratio of about 5.0. However, the second ground 

motion spectrum shows an additional and higher sum of modal 

maxima of about 2.75 times the fixed base response at a K^/K^ 

ratio of between 0.1 and 0.5. The occurrence of this second 

peak is thought to be a feature of the simple sine function 

used as ground acceleration and is not considered to be repre

sentative of response spectra in general. 

The foregoing analysis of the results of these transla-

tional structure studies emphasizes the importance of proper 

modeling of the foundation. The assumption of a fixed base for 

a containment structure where, in reality, an appreciable 

amount of translational movement is possible, perhaps by place

ment of cushioning material between a bedrock layer and the 

containment base slab, when a translational structure should 

have been assumed, could result in design of a structure for 
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lateral forces of only one-half of their actual magnitude. The 

assumption of a fixed based structure is not necessarily a 

conservative one, indeed. 

The results also emphasize the importance of a reasonably 

accurate determination of foundation translational stiffness 

properties. Order of magnitude or rule-of-thumb estimates of 

the foundation translational stiffness will not suffice if any 

accuracy is to be gained from the analysis. It can be seen from 

the figures discussed in this section that an order of magnitude 

error in stiffness can result in 100 percent error in response. 

On the other hand if the translational stiffness is known to an 

accuracy of - 15 percent, perhaps not an unreasonable require

ment even for a material as variable as soil, a response of 

within 25 percent of the true response should be possible. 

Considering the uncertainty in knowledge of the ground motion, 

itself, this is about all one can require in accuracy at this 

point. 

C. Foundational Stiffness Influence on Rotational 

S truc tural Response 

The response of rotationally based containment structures 

to a bilinearly approximated El Centro response spectrum is 

presented in figures twenty-eight through thirty-two. All 

structures exhibit a fixed base response when the K^/K^ ratio 

is greater than 10^ (not shown on the figures). As the foun

dation becomes softer and the stiffness ratio decreases the 

response falls of monotonically at a rather slow rate. 
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The resonance peaking assocated previously with the trans-

lational displacement does not occur. Since this study was 

based on the use of only one rather approximate response spec

trum, however, it should not be inferred that this result is 

necessarily a general one. That can only be determined through 

analysis using a large number of response spectra. 

The falloff in structural response with decrease in the 

rotational stiffness ratio (K^/Kg) is interesting. It does not 

appear that reduction in the rotational stiffness ratio, i.e. 

reduction in foundation rotational stiffness, is as effective 

in reducing structural response as is a corresponding reduction 

in translational stiffness. In most cases the structural 

response remains between twenty-five and seventy-five percent 

of the fixed base response for very soft rocking foundations. 

For the corresponding very soft value of a translational (or 

combined) structure the response is always in the range of ten 

to twenty percent. 

By way of summary, then, it has been seen in the previous 

discussion that the effect of rocking, as is developed in a 

rotational foundation as the rotational stiffness is decreased, 

is one of decrease in the response of the structure when com

pared with the response of a fixed base structure of the same 

dimensions and for the same ground motion input. The response 

reduction is very gradual, however, and considerable error is 

allowable in the assignment of a rocking stiffness value with

out appreciably effecting the structural response results. 
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D. Foundation Stiffness Influence on Combined 

Structure Response 

The response of containment structures with both rotational 

and translational freedom to a bilinearly approximated El Centro 

spectrum is presented in figures thirty-five through thirty-nine 

and figures forty through forty-four. Figures thirty-five 

through thirty-nine consider the combined variable case and 

figures forty through forty-four consider the combined constant 

K case. 
r 

Turning to figures thirty-five through thirty-nine it is 

observable that the general curve shapes are similar to the 

structural displacement and structural response curves graphed 

from translational structure calculations. Again, at high 

K1/K2 ratios the response is fixed based, as the stiffness ratio 

(K^/Kg) is reduced a resonance effect occurs and, continuing on 

to even smaller values of the response and displacement 

are depressed to considerably below the fixed base values. 

Some explainable refinements are present, however. The peak 

response has been reduced slightly and shifted to a somewhat 

higher K^/K2 ratio. Where the maximum structural response 

occurred, previously at a K^/K2 ratio of 5.0 for the transla

tional structure case, it now occurs at a K^/Kg ratio of about 

10.0. There is a small response reduction to the low K-^/K^ 

side of the peak response value. 

This difference between the combined variable K struc-
r 

tural response and translational structure response can easily 
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be explained as the added effect of rocking action. Recalling 

from the rotational structure structural response graphs that 

the rocking response was below the fixed base value throughout 

its entire K^/Kg range. It was somewhat further below its 

fixed base value at low K^/Kg values than at large K^/Kg values. 

The combined variable response, then, is essentially a 

synthesis of features of both translational and rocking behav

ior as one might expect. 

Continuing on to the structural displacement and struc

tural response values shown in figures forty through forty-

four, the general curve features are very similar to the 

features just detailed for the combined variable structure 

curves. Two differences become apparent from study of the 

curves, however. First, the structural response does not ap

proach the fixed base response of the structure at large values 

of because rotational stiffness remains constant. Instead, 

at large values of the structural response approaches the 

structural response value corresponding to the specified K^/K^ 

value of the rotational structure case. 

Second, to the left of the resonance peak the structural 

displacement and response do not fall off monotonieally. Rather, 

a second small resonance peak is in evidence at a K^/Kg ratio 

of about 0.5. This resonance peak is attributable to increased 

second mode contribution to response in the region. It, also, 

has the effect of increasing the structural response somewhat 

in the low K^/K2 ratio region below this additional resonance. 
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E. Effect of Mass Partitioning on Structural Response 

An extremely accurate approximation of mass distribution 

was not required for the purpose of this study inasmuch as the 

effect of foundation on overall structural response and not the 

details of the structural action, itself, was the principal 

interest. Also, the limited number of analog components (opera

tional amplifiers) available dictated that the structural mass 

distribution be kept as simple as possible. Hence, a two mass 

approximation of the containment mass was adopted. It was the 

simpliest mass distribution that would still describe the es

sential features of the problem. 

As indicated previously (section VI) four different mass 

partitions were used and the effect of each of these partitions 

on the problem was determined for type I and type II structures. 

For the remaining type III, IV and V structures only one mass 

distribution, the I^ equated mass distribution, was used. 

The effect of each of these mass distribution assumptions 

can be observed by referring to figures twenty-three through 

twenty-six, twenty-eight through thirty-one, thirty-five 

through thirty-eight, and forty through forty-three. Referring 

to figures twenty-three and twenty-four the effect of making 

these various mass partition assumptions can be observed for a 

type I structure with translational foundation. The effect of 

increasing the portion of the sidewall mass in the top lumped 

mass is seen as one of raising the absolute displacement 

slightly. The structural response is decreased slightly by 



www.manaraa.com

155 

this mass change. Overall, changing the top mass concentra

tion from that of including only one-third of the sidewall mass 

to that of including two-thirds of the sidewall mass results in 

a change of response of ten percent of the fixed base response 

for low values to thirty percent for a K^/Kg value of 

about 5.0. The effect of this mass variation on a type II 

structure with a translational foundation is very nearly the 

same so it will not be discussed in detail. 

Turning to the effect that variation in the mass partition 

can make in the response of a rotational type I structure the 

results are shown in figures twenty-eight and twenty-nine. The 

result in increasing the top mass from one of including one-

third of the sidewall mass to one of including two-thirds of the 

sidewall mass is a rather constant ten percent increase in 

structural response. The effect of mass partition variation on 

a type II rotational structure is much the same. A constant 

approximate twenty percent change is evident, however. 

The influence of mass variation on the structural response 

of type I and type II combined variable structures are 

shown in figures thirty-five through thirty-eight. For both 

type structures it is observable that the effect of increasing 

the top mass is one of both increasing the maximum response 

and shifting it to a lower ratio. The effect on struc

tural response is just the reverse, i.e. the structural response 

is decreased and shifted to a higher K^/K2 ratio. The effect 

of mass variation for the combined constant K structure is 
r 
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essentially the same as for the combined variable situation. 

Hence, it will not be discussed in detail. 

The comparative effect that various mass partition assump

tions have on the structural response for structures of dif

fering height can be seen by comparing against each other the 

type I and type II structure response changes cause by the 

variation in mass partition for a given foundation condition. 

It is observable that very little effect of height is notice

able for the translational and combined constant foundations. 

However, when the rocking and combined variable structures 

are considered, the taller type II structure shows a somewhat 

increased sensitivity in structural response by the mass parti

tioning used. 

By way of summary, it is obvious that even fairly extreme 

assumptions as to effective mass partition do not change very 

greatly the structural displacement and structural response 

values obtained from the analyses. The assumption of mass 

partition does not affect in any way the conclusions of the 

stiffness part of this investigation since they are mainly 

qualitative. 

The insensitivity of structural response to mass assump

tion may be regarded in a broad sense as indicating that the 

continuous structure response is fairly accurately represented 

quantitatively by the two lump mass approximation. For the 

lumped mass/continuous mass structure with a fixed base accur

ate modal frequency information is available. The first mode 
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frequency of 7.94 compares favorably with the 8.18 fixed base 

frequency obtained from the half sidewall lumped top mass. The 

one-third and two-thirds sidewall top mass approximations have 

frequencies of 8.86 and 7.62, respectively. Inasmuch as half 

sidewall lumped mass approximation represents well the true 

first mode frequency for the fixed base case and the one-third 

and two-thirds mass approximations from rather wide frequency 

bounds, it is a logical deduction that these three mass approx

imations represent well the best approximate and bounding values 

in the actual structural response of containment structures 

throughout the entire foundation stiffness range. 

F. Omission of Component Mass and Moment of Inertia 

Effect on Structural Response 

The effect of omission of component mass and/or moment of 

inertia on a type II structure is viewable in figures forty-

five through forty-eight for various foundation conditions. 

Several effect, some of them fairly obvious, are noteworthy. 

For a translational structure it is obvious that internal 

moment of inertia should have no effect on the resulting struc

tural response and the calculated results confirm this observa

tion. Likewise, for a rotational structure omission of the 

internal mass contribution to the base mass should not have any 

influence on structural response. That this is the case can 

be seen in figure forty-six. 

Change in the base mass magnitude of a type II transla

tional structure through complete neglect of the mass of inter
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nal structures and equipment does change, but not signifi

cantly. its structural response except in the region of reso

nance (2.0 <r50.0). In this resonance region the 

response is reduced from 175 percent to 150 percent by this 

change. For the rotational type II structure the complete 

neglect of the internal strucutres and equipment contribution 

to the total mass moment of inertia results in a small but 

fairly constant ten to fifteen percent change in structural 

response throughout the entire range of stiffness ratios. 

Turning to the combined type II structure cases as shown 

in figures forty-seven and forty-eight total change in struc

tural response considering change in mass and/or moment of 

inertia with change in stiffness ratio is somewhat more complex. 

Total neglect of mass and/or moment of inertia of internals 

does not affect the structural response greatly for K^/K2 ratios 

less than 1.0 or greater than 40. However, in the resonance 

range omission of either mass and/or moment of inertia can be 

seen to reduce the resonance response peak from an estimated 

200 percent of fixed base response to an estimated 175 percent 

of fixed base response. 

To summarize the above discussion, it is seen that complete 

neglect of mass and/or moment of inertia of structural internals 

does not have a great effect on structural response computations. 

For the designer, an estimate on the moment of inertia of his 

structures and internals to no less accuracy than - 25 percent 

should be available from previous projects. With information 
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on internal structure and equipment mass and moment of inertia 

available to this accuracy, the computation of overall contain

ment structural response should be well below the accuracy 

currently permitted by uncertainity in seismic ground motion. 

G. Effect of Structure Height on Ground Motion 

Developed Structural Stress 

Consider the influence that a containment structure's 

height will have on its response under ground motion. The dif

ference between the response of a short type I translational 

structure and that of a taller type II translational structure 

can best be seen by comparing the structural displacements 

developed in each structure at identical values. This com

parison can be accomplished by comparing the values in figures 

twenty-three and twenty-four. It is to be observed from these 

figures that the taller, more flexible type II structure de

velops around twice the displacement of the shorter type I 

translational structure. Note that the abscissa is expressed 

in terms of values and, also, recall that the value of 

K2 of the type I structure is about three times that of the 

taller type II structure. The displacement values, therefore, 

for type I structures should be compared with corresponding 

values of the type II structure at a K^/K2 abscissa of about 

three times larger. 

The effect of height on the displacement of a rotationally 

based stiructure is observable from a comparison of the type I 

and type II structure displacement curves of figures twenty-
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eight and thirty. In magnitude of displacement and for a given 

value, the taller structure again shows about twice the dis

placement of the shorter structure. The same precaution with 

regard to comparing displacements at equal values and not 

equal K^/K2 ratios should, of course, be observed if an accur

ate point by point comparison is desired. 

The above mentioned displacements are not a comparative 

measure of structural stress and strain when structures with 

different heights are considered. It is desirable that the 

stress levels in these structures be compared. The previously 

referenced graphs of structural displacement do not show this 

information, but it is easily shown that such a stress level 

comparison is actually being made if values of K2X2H2 are com

pared. For the type I and type II structures discussed in 

this section, multiplying type II structure displacement values 

by a factor of 0.71 permits such a stress level comparison to 

be made. Figure sixty-one is a graph of such a stress level 

comparison of type I and type II translational structures. 

Figures sixty-two through sixty-four give the same stress com

parisons for type I and type II structures for rotational, com

bined constant and combined variable foundation situa

tions, respectively. 

An inspection of these figures shows that the taller type 

II structure, with any of the types of bases considered, 

developes considerably greater structural stress than does a 

type I structure with a comparable base and identical section 
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properties. This result is to be expected inasmuch as the type 

II structure has a much greater mass and mass moment. The 

type I curves are identical to the curves discussed previously 

while the type II curves are also identical to the previously 

discussed curves in shape but are reduced in magnitude by the 

previously cited factor of 0.71. Each of these curves shows 

the peak stress in the taller type II structure to be about 150 

percent of the peak stress in a comparable type I structure. 

For specific values of the stress ratio varies widely, being 

as high as 400 percent for some values to as low as 110 percent 

for others. 

It normally would be considered a logical move on the part 

of the structural designer to reduce his containment structure's 

height if seismic stress starts to significantly influence his 

design. Given a height reduction factor of two, an increase 

in twice the base area (and accompanying increase in and/or 

K^) would normally also be made due to a usual design require

ment for a specific containment volume. In making such a 

change the designer would probably also strive to maintain 

pneumatic longitudinal and hoop stress unchanged. Under such 

conditions, the thickness and radius and, hence, the stiffness 

of the structure would be greatly increased. 

The stress developed in a structure with an increased base 

area is, of course, proportional to its KgXgHg factor as was 

the case with the previous structures. The Hg is, again, the 

structure's overall height. The value can be computed from 
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a knowledge of the structure's height and section properties in 

the manner previously described. To obtain the Xg value use 

was made of the fact that structural response for a given K^/ 

Kg (or K^/Kg) ratio is insensitive to Kg. Individual Xg values 

were then obtained by multiplying the selected structural re

sponse ratio by the response spectrum value corresponding to 

the fixed base of the reduced height, increased base, structure. 

The structural relative stress of such a modified struc

ture with a translational foundation is shown as the dashed 

curve in figure sixty-one. It is seen in referring to this 

figure that the stress in the modified structure is greatly 

reduced as compared to stress developed in its companion type 

II structure. The dahsed curve reaches a peak of value of 23.3 

stress units at a K^ of 100 x 10^ (not shown in this figure). 

The unit stress then drops off gradually at higher values of 

8 K^. At a value of 10 the stress in the structure is essential

ly the fixed base stress value of 13.3 units. 

Using the same factor of two height reduction on a type II 

structure, but with a rotational foundation situation, the re

sulting stress change can be seen in figure sixty-two. It is 

observable that the modified structure developes through the 

entire stiffness range only about twenty-five percent of the 

stress that is developed in the taller structure for the same 

ground motion. 

For the combined structure cases the general behavior will 

be qualitatively similar to the aforementioned translational 
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structure behavior. However, the stress reduction for these 

cases cannot be computed since different ratios of K^/K^ are in

volved than those that are available from the results of this 

study. 

H. Reliability of Analog Results 

As an initial verification of the correctness and accuracy 

of the analog patching for the damping portion of this study, 

a series of modal analyses were made for the zero damping case 

using the response spectrum of figure twelve. An exact digital 

modal analysis solution is not obtainable. However, the 

absolute modal sum gives an upper bound on the correct solution, 

the square root of the sum of modal maxima gives a general aver

age value of what the solution may be and, of course, the 

absolute difference between two modal maxima gives a lower 

bound for the correct solution. These modal combinations re

sults, along with the analog developed solutions for the same 

series of problems, are plotted for the type I and type II 

translational, rotational and combined variable structures 

in figures forty-nine through fifty-four. 

For the analog computer set up to be a valid representa

tion of the particular problem being considered the analog 

determined maximum must lie between the upper and lower bounds 

established by a modal analysis solution to the same problem. 

That this qualification has been met can be observed by scaning 

the above cited figures. 
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The general accuracy of the analog analyses can also be 

inferred from these figures by comparison of the closeness of 

fit with which the analog maximum corresponds to the upper and 

lower bounds at pinch points, i.e. points where the maximum 

and minimum bounding values are close together, the very good 

fit that has been achieved at such points is indicative of the 

accuracy of the analog solution. The analog recorder is read

able to an accuracy of between one and three percent, depending 

on the strength of the output signal and scale used. The elec

tronic components of the analog have order of magnitude greater 

accuracy. The accuracy of the results shown in these figures 

is, therefore, the accuracy to which the analog recorder is 

readable, namely one to three percent. 

I. Comparison of Digital and Analog Results 

Figures forty-nine through fifty-four described in the 

previous discussion relating to analog computer set up validity 

are essentially graphs of exact maximum structural displacement 

values (analog values) and maximum structural displacement 

values obtained by the use of various modal combination crite

ria. While not the main thrust of this study, it is, neverthe

less, of interest to compare these results. It has been sug

gested by Clough (8), for example, that, for a small number of 

modes, the most appropriate modal combination to use to approx

imate the true maximum is the sum of absolute modal maxima 

whereas for a large number of modes he suggests that the use of 

a square root of the sum of the squares of modal maximum will 
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yield a closer approximation to the true maximum. 

For the six cases studied (see figures forty-nine through 

fifty-four) the actual (true) response was quite varied as can 

be observed from the figures. It varies from below the com

puted square root of the svim-of-the-squares value in figures 

forty-nine and fifty-two to that of following closely the sum 

of modal maxima for parts of the curve in figures fifty and 

fifty-one. For most of the cases considered, some sections of 

the true (analog computed) response versus stiffness ratio 

curve are at the sum of the modal maximum and other sections 

trace along the square root of the sum of the squares maximum. 

Along certain sections the true response also drops below the 

computed square root of the sum of the squares maximum, how

ever. 

These results seem quite scattered. To place them in 

perspective, however, it should be emphasized that these are 

results for only one forcing function. A slightly different 

time variation or duration of forcing function would undoubt

edly cause the true value to take a different path so that in 

another section of the graph it approached an absolute maximum. 

Accepting such argument, it must be concluded that, for the two 

and three mode cases considered, the sum of absolute modal 

maxima is the logical best choice for the maximum value that 

will be attained. It is also the one that, of course, supports 

the previous suggestion by Clough. 
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J. Foundation Damping Influence on Structural Response 

The effect of damping on the structural displacement of 

transiational type I and type II structures is shown in figures 

fifty-five and fifty-six. It is observable in these figures 

that a) the undamped displacement of the type II structure is 

approximately four times that of the type I structure, b) the 

displacement of both type I and type II structures has reached 

a constant fixed base single degree-of-freedom value at a K^/ 

K2 value of about fifty and greater, c) both structures show 

resonance peaking at intermediate values of K2/K2 (0.05 < K^/ 

Kg ^5.0) with a resonance displacement in each case of about 

three times the fixed base displacement and d) the structural 

displacement drops considerably below the fixed base value at 

small K^/Kg ratios (K^/K^ K 0.01). 

The effect of damping on structural displacement can be 

seen principally as that of decreasing the structural displace

ment from its undamped value in the region of resonance and as 

that of increasing the structural displacement over its un

damped value at low K^/K^ ratios (K^/Kg < 0.05). A two percent 

foundation damping coefficient reduces the structural displace

ment increase above its fixed base value to one-half of the 

undamped structural displacement increase. Five percent founda

tion damping, considered at all unreasonable for a typical soil 

foundation, reduces this resonance increase in displacement to 

one-fourth of the displacement increase that occurs without 

foundation damping being present. Further increases in founda
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tion damping continue this decrease in response change to such 

an extent that at forty percent damping the response is quite 

flat throughout the entire range of K-^/K2 ratios of interest. 

Turning to the rotationally based type I and type II 

structures, the general pattern of structural displacement is 

graphed in figures fifty-seven and fifty-eight. It is obser-

able for the zero damping case that a) the maximum relative 

structural displacement of the type II structure is again about 

four times the displacement of the shorter type I structure, 

b) the response of both structures is essentially a constant, 

fixed base value at a K^/Kg ratio of about 10^ and greater, 

c) both structures exhibit a resonance response that rises to 

a maximum displacement of about twice the fixed base displace

ment in the intermediate K /K^ region and d) the displacement 
r 

falls to considerably below the fixed base displacement at a 

K^/Kg ratio of 500 and below. 

With respect to damping and again referring to figures 

fifty-seven and fifty-eight, it can be observed that damping 

substantially surpresses the resonance response for the rocking 

cases in the same manner that it affected the translational 

structure cases. A two percent foundation damping again reduces 

the increase in displacement over the fixed base value at reso

nance to one-half of the increase in displacement that would 

have occurred at resonance if no foundation damping had been 

present. A five percent foundation damping limits the reso

nance increase in displacement to one-fourth of the undamped 
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displacement increase. Further increases in foundation damp

ing percentage further suppress this resonance increase until 

at around forty percent damping the resonance is almost com

pletely suppressed. 

Considering now the effect of damping on combined vari

able type I and type II structural displacement, the results 

are shown in figures fifty-nine and sixty. As might be antici

pated the combined displacement represents somewhat the aver

aging of rotational and translational displacements. The rela

tionship of the undamped displacement characteristics of the 

type I structure to the undamped displacement characteristics 

of the type II structure are the same as in the previous two 

cases. Likewise, the effect of damping on these displacements 

is essentially the same as that reported for the translational 

and rotational cases. 

In summary, it has been shown that foundation damping can 

have a significant effect in limiting structural response. It 

bears emphasizing, however, that each of these damping cases 

were developed with two percent structural damping in the sys

tem in addition to the varying percentages of foundation damp

ing. However, in all cases the analog problem was run ini

tially with zero and two percent structural damping but with no 

foundation damping to obtain the zero foundation damping re

sponse. The values of these two cases were always essentially 

the same, i.e. there was virtually no effect on the peak struc

tural displacement by use of two percent structural damping. 
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The curves for zero foundation damping are, therefore, really 

two superimposed curves; one for zero structural damping, and 

one for two percent structural damping. 

K. Capability of Modal Analysis Technique to 

Describe Damped Structural Response 

A specific objective of this investigation has been to 

evaluate the effect ivness of the currently used modal analysis 

technique for predicting the structural response of containment 

structures with structural and foundation damping. With this 

view in mind the percentage response change for various per

centages of modal damping was calculated for the previously 

selected series of foundation stiffness values. For each 

specific calculation the modal damping percentage was held to 

the same value for each mode. The response spectrum curve in 

figure twelve corresponding to this percentage of critical 

damping was used to determine the structural displacement factor, 
w 

The results of these modal analyses have been plotted as an 

overlay to the actual analog evaluated response reduction per

centages obtained when various selected amounts of foundation 

damping are used along with the same foundation stiffness 

values. The results of these comparative computations for type 

I and type II translational, rotational and combined variable 

structures are shown in figures sixty-five through seventy. 

The modal ordinate values in these figures refer to the damped 

modal sum of maxima displacements as a percentage of the 

undamped sum of modal maxima. Likewise, the analog ordinate 
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values in these figures refer to the damped analog computed 

displacement values as a percentage of the undamped analog dis

placement. It is to be recalled that the sum of modal maxima 

was shown in a previous section to be a good representation of 

structural response for two and three degree-of-freedom systems 

such as considered in this study. 

Discussing first the translational type I structure the 

results are graphed in figure sixty-five. At large and inter

mediate values of K^/K2 (K^/K2 > 0.05) it is observable that a 

value of five percent foundation damping corresponds reasonably 

well to forty percent modal damping. Likewise, a value of two 

percent foundation damping corresponds to between ten and 

twenty percent modal damping for this same K^/Kg range. Greater 

percentages of foundation damping than five percent do not 

appear to offer much by way of additional response reduction, 

however. An explanation for this observation that larger than 

five percent foundation damping does not offer much in the way 

of increased structural response reduction lines in the fact 

that the structure has been reduced to close to a fixed based 

structure already at five percent damping. 

For values of the region of less than 0.05 a 

noticeable deviation between modal evaluated and actual analog 

evaluated structural response occurs. Modal analysis predicts 

structural response to remain somewhat suppressed due to damp

ing. However, analog analysis shows that at low ratios 

the response actually increases over the response the structure 
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has without damping. This is interpreted as showing that the 

actual effect of increased damping in the low K^/K2 region is 

one of transferring more force into the structure and, hence, 

increasing structural response. Considering the value of two 

percent of foundation damping, it is seen that an equivalent 

ten percent foundation damping does a fairly effective job of 

modeling the damping effect down to a K^/Kg ratio of about 0.01. 

However, for a foundation that can be estimated to develop 

larger than two percent damping application of modal analysis 

even with the assumption of large damping percentages appears 

to give very poor results at ratios below 0.05. 

Going on to the case of a type I structure with a rota

tional foundation the results are graphed in figure sixty-six. 

Again, a five percent damping of foundation rocking motion is 

the close equivalent of forty percent modal damping for inter

mediate and large K^/K^ ratios (K^/Kg ̂  2000). For the same 

range of K^/K2 ratios, a two percent foundation damping is seen 

as approximately equivalent to twenty percent modal damping. 

Also, as in the previous type I translational structure case, 

the modal analysis procedure is seen as not being capable of 

giving good structural response reduction predictions at low 

^r'^^2 ratios (K^/K^ <2000). The effect of essentially fixed 

base action occurring at foundation damping percentages greater 

than twenty percent is again observable. 

Continuing on to the type I combined variable structure 

the results are shown in figure sixty-seven. A comparison of 
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this figure with figure sixty-five showing the results for the 

type I translational structure reveals a great similarity in 

response reduction. The previous discussion with reference to 

the type I translational structure is equally valid for the type 

I combined variable K case. 
r 

The results of the comparative analyses for the taller 

type II translational structure are shown in figure sixty-eight. 

The general appearance of both the modal and analog evaluated 

effects of damping on structural response are very similar to 

the previous results obtained for the type I translational 

structure. The one real difference appears in the range of 

applicability of modal analysis. The validity of modal analysis 

extends for this structure down to an approximate K^/Kg ratio 

of 0.03 for two percent foundation damping. For five percent 

foundation damping modal analysis gives good agreement (if 

appropriate modal damping coefficients are chosen) for values 

of K^/K2 of 0.50 and greater. 

Considering the case of a type II structure with a rota

tional foundation the results of the analyses are shown in 

figure sixty-nine. The response of the type II rotational 

structure is quite similar to that of the type I rotational 

structure. The range of validity of modal analysis extends 

down to a value of of about 5000. A two percent founda

tion damping appears the equivalent of five to ten percent 

modal damping. The five percent foundation damping relates 

approximately to between ten and twenty percent modal damping. 
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For low K^/Kg ratios (K^/K2 ̂  5000) modal analysis does not 

seem applicable. 

The results of the analog computed and modal computed 

structural response reduction for a type II structure with a 

foundation with both rotational and translational freedom is 

shown in figure seventy. It is observable from the figure that 

in general shape of the analog response reduction is quite 

similar to that of the type II rotational structure. Modal 

analysis appears applicable in the large and intermediate 

range (K^/Kg ̂  1.5) with two and five percent foundation damp

ing corresponding to between five and ten and between ten and 

twenty percent modal damping, respectively. For values of K^/ 

less than 1.5 modal analysis no longer has any applicability. 

To summarize the detailed information presented in the 

preceding paragraphs, it has been seen that damping can have a 

significant effect on structural response. The true effect of 

damping does not appear, from these limited studies, to be 

adequately accounted for by use of modal analysis. For large 

values of damping of ten percent and greater the damping is 

seen to impart enough resistance to relative motion between the 

structure and its foundation to result in a structure that can 

be analytically considered as fixed based. For damping values 

of below ten percent one must be careful as to the range of 

foundation stiffness in which the particular structure under 

investigation is located. If the structure-foundation stiff

ness ratio is high the use of modal analysis procedures appears 
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valid. However, the effective damping is high and it seems 

advisable to assign a coefficient of modal damping that is at 

least five times the foundation damping coefficient. In the 

region of low and K^/K2 ratios modal analysis does not 

appear, even through the assignment of adjusted modal damping 

coefficients, to have application. Until a more satisfactory 

method is found for considering damping for structures with low 

K1/K2 and/or K^/Kg ratios, it would seem advisable for these 

structures with soft but moderately to heavily damped founda

tions (K^/K <0.10(1), K^/Kg < 1.0(11), < 2000, and 5 

to 40 percent foundation damping) to assign the structure a 

fixed base. 

L. Modal Representation for Damping 

A particularly troublesome aspect of the structure-founda

tion interaction problem is the finding of a suitable represent

ation for the foundation soil system. The theoretically best 

approach is to treat the foundation as an elasto-plastic half 

space. However, only for the very simplest of cases where the 

foundation is homogenous, elastic and semi-infinite has a 

solution been determined. 

Another approach with merit is to idealize the foundation 

as a lumped parameter system. Seed and Idriss (39)(40) has 

recently been quite successful in predicting the response of 

both homogenous and layered soil systems using such a founda

tion idealization. This type of representation has the advan

tage of having the capability of accounting for non-homogenities 
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absolute sum computed damping effectiveness 
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in soil properties and varying location of bedrock with respect 

to the structure's base. 

The analytical model used in this study is actually the 

simplest possible lumped parameter foundation idealization, i.e. 

the foundation is represented by a single lumped mass and a 

single set of springs and dampers. For a particular site, 

especially where the foundation is a layered soil system with 

different stiffness properties for each layer, the use of sev

eral masses and stiffnesses in the idealization is desirable. 

For the purpose of this parametric investigation the character

ization of the foundation by single mass and averaged stiffness 

is undoubtedly suitable, however. 

The basic suitability of the structure-foundation model 

used in this study to properly model foundation damping effects 

is subject to some question. As indicated previously, damping 

in the structure-foundation system is of two types, loss of en

ergy in the internal friction of the soil and radiation of en

ergy away from the system. The first type is thought to be 

reasonably well modeled by the assumption of viscous dampers. 

However, the second type of damping, the energy loss due to 

radiation of energy away from the structure, is not rationally 

accounted for by a viscous damper assumption. It is felt that 

this effect can, to a closer degree, be identified in a lumped 

parameter system as the motion imparted to lumped foundation 

masses by the motion of the structure and base masses through 

the structure's base. To obtain this effect one must have, as 
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a minimum, a two mass representation of the structure's founda

tion and underlying soil system. Such a possible idealization 

is shown in figure seventy-one. 

The effect of energy radiation from the structure has, of 

course, not been accounted for by the model used in this inves

tigation. It is felt that inclusion of this effect by going to 

a more detailed lumped mass representation of the system could 

appreciably alter the damping investigation results for low 

foundation stiffness, high foundation viscosity, cases. As 

already seen in figures sixty-five through seventy the present 

model predicts large force transfer into the structure for high 

foundation viscous damping. This may not be entirely valid for 

actual structures. It is a topic that certainly merits future 

study. 
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Figure 71. Two foundation mass idealization proposed to 

account for foundation translational energy 

radiation from the structure 
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XI. CONCLUSIONS 

The results of this investigation as amplified in the 

previous discussion section support the following conclusions. 

a. In order to achieve accuracy in the analysis of the 

response of a containment structure to ground motion it is 

essential that a model appropriate for the particular founda

tion situation be selected. Restated in another way, it is 

necessary that both translational and rocking motion be modeled 

as they present themselves as foundation freedoms. Assumption 

of different foundation conditions have been shown in this study 

to yield entirely different stimctural responses for the same 

input ground motion. 

b. Reduction in foundation stiffness results in reduction 

in structural modal frequencies for the same structure. 

c. The use of the sum of absolute modal maxima for a 

small number of degrees of freedom (two or three) is supported 

by the results of this investigation. 

d. Containment structures with very firm foundations 

behave as essentially fixed base structures. As the foundation 

stiffness is reduced, however, from a very large value to a 

value approximating the stiffness of the structure a resonance 

effect occurs and the structural response can easily rise to 

double the fixed base response. As the foundation stiffness is 

further reduced, the amount of force actually transmitted into 

the structure is greatly reduced. The structural response falls 
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to a small fraction (ten to twenty-five percent generally) of 

the fixed base response at low stiffness ratios. 

e. A fairly precise knowledge of foundation stiffness is 

needed if an accurate determination of structural response to 

ground motion is to be achieved. A variation in foundation 

stiffness of a factor of two can result in structural response 

variations from values that are twice the fixed base response 

to values of one-half the fixed base response. If only a crude 

determination of foundation stiffness is made by assignment of 

stiffness values based solely on a soil classification rather 

than by actual field studies, for example, the resulting error 

in stiffness could lead to large over or under estimation of 

structural response. 

f. Change in foundation translational stiffness appears 

to affect structural response more than does change in rota

tional stiffness. 

g. Based on the small structural response changes that 

were obtained from rather extreme variations in lumped mass 

assumption made in this study, the accurate evaluation of struc

tural response appears not to be sensitive to the approximation 

made in containment structure mass distribution. Any mass 

distribution that reflects in a reasonable manner the variation 

in containment mass would probably give accurate structural 

response results. Specifically, it is thought that for the 

type I, II, III and IV structures considered in this study, a 

three or four lump mass system should give good results. For 
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the type V structure five to seven lump mass would probably be 

required for good results. 

h. Even total omission of the mass and/or moment of 

inertia due to equipment and structures intex*nal to the contain

ment structure has not resulted in a large change in structural 

response. An estimate of internal structure and equipment mass 

and moment of inertia to within twenty-five percent should be 

satisfactory. 

i. Structural displacement is much greater in tall con

tainment structures than short ones. More important, however, 

is the observation that the seismic stress developed in a con

tainment structure is very sensitive to the structure's height. 

A tall containment structure develops much larger seismic stress 

than does a short one (for the same containment volume). Thus, 

a step the structural designer may take, if seismic stress 

controls the design and needs to be reduced, is to make a 

height reduction. 

j. An accurate knowledge of the damping properties of 

the particular foundation under consideration is important. 

Large value of foundation damping (twenty percent and greater) 

can, in effect, be nearly equivalent dynamically to the 

assumption of a fixed base system. Even small values of damp

ing (two to five percent) can result in structural response 

values that are greatly decreased in the resonance region and 

greatly increased in the low stiffness region over the values 

of the same system without damping. 
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k. Modal analysis appears to have only limited applica

tion in structural response problems that involve structure-

foundation interaction and damping. The results of this study 

support the use of the modal analysis method only for moderate 

to large stiffness ratios (K^/K2 or K^Kg) when the foundation 

has a small amount (two to five percent) of damping. For the 

foundation situation where a low stiffness but a moderate to 

large amount of damping is present, modal analysis predicts 

low structural response values whereas the results of the analog 

investigations show the structures actually to behave as es

sentially fixed based. Where a very soft (low or as 

applicable) foundation occurs and where the foundation damping 

is also small (ten percent and less) modal analysis has also 

not been successful in evaluating the actual structural action. 

1. A small amount of structural darcping has not been 

found effective in limiting structural response. However, a 

small amount of foundation damping, i.e. foundation damping 

percentages of two and five percent, have been shown to be 

equivalent to much larger (ten to forty) percentages of modal 

damping. Thus, the assignment of five times the evaluated 

foundation damping percentage as a modal damping percentage 

(for all modes) seems useful in determining structural response 

for moderate to stiff, lightly damped, foundations. 
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XII. SUGGESTIONS FOR FURTHER STUDY 

It is probably not too surprising that in the course of 

this investigation several topics meriting more extended study 

emerged. Topics in which development of further information 

appears important to the accurate analysis of seismic forces 

in containment structures are as follows: 

a. The structural response results of this study and the 

conclusions derived therefrom have been based on a bilinearly 

approximated El Centro spectrum. This spectrum shows a large 

response over a broad range of frequency values and is the 

spectrum most generally used where a conservatively large 

maximum response is desired. The results of its bilinearly 

approximated usage in this study and the conclusions derived 

herein are qualitative, not quantitative, results, however, 

since only this one approximate spectrum has been used. The 

results show the effect of foundation conditions in general 

terms but, of course, could not be used for design since the 

effect of selected design earthquake spectrum would qualita

tively differ somewhat from the bilinear response spectrum used 

herein. Even if the El Centro spectrum was used as one of the 

design spectra, it would be desirable to more accurately approx

imate this spectra than that approximation afforded by the 

bilinear approximation used in this study. It would, therefore, 

be desirable to extend this study to ascertain the effect that 

varying the actual earthquake will have on the structure's re
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sponse. Such a study might, for example, include use of four 

or five of the presently most used spectra. Such spectra 

could fairly easily and accurately be approximated by a series 

of twenty-five to fifty straight line segments. The results 

of such information could enable the designer to "envelope" 

his actual containment response for the particular design Kj^/ 

K« or K /Ko situation. z r z 

b. The assignment of approximate structural stiffness 

values for containment structures is a problem. For monolithic 

structures of large length-to-depth ratios (>3.0) the deflec

tion due to shear is neglibible and inclusion of shear deflec

tion is not needed. As this ratio decreases into the range of 

tall containment structures (1.5 to 3.0) the shear contribution 

to deflection must be considered. For containment structures 

that have length-to-depth ratios of one to one and one-half the 

mechanics of materials plane strain assumption is not valid and 

reliance must be placed on structural testing and/or more 

sophisticated analysis. For stubby shear walls of solid rec

tangular cross section tests have been made and design curves 

are available. However, no such information could be identi

fied in the literature for hollow circular cross sections. 

Research directed toward development of stiffness information 

for such a typical containment shape would be desirable. 

c. The containment structure analyst is at the outset 

faced with making the decision as to the number of lumped masses 

to use in dynamically describing his structure. A containment 
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structure is, of course, a continuous mass system with a very 

non-uniform mass distribution. Some guidance may be afforded 

by comparing the known frequencies and mode shapes of distrib

uted mass cantilever or simply supported beams or other simple 

cases with the results obtained by using various mass lumping 

approximations. The extendibility of such information to a 

containment structure with its varying possible foundation free

doms and stiffnesses is unknown. It would be useful, therefore, 

to study the structural response of typical containment struc

tures with each of their typical foundations and varied founda

tion stiffnesses for a series of problems in which only the 

lumped mass approximation to the structures is varied. The 

results derived from such a study could serve to give defin

itive guidance to the structure designer as to how extensive a 

lumped mass system is necessary to accurately describe a con

tainment structure dynamics problem. 

d. The analog computer techniques used in this study are 

felt to have real possibility as an analysis tool to evaluate 

the response of structure-foundation systems to seismic ground 

motion. However, it is considered that at least one more mass 

with transiational freedom must be included in the foundation 

model in an attenpt to account for energy radiation from the 

structure. For containment structures at least one more mass 

with far coupled stiffness should also be added to increase 

the accuracy of the structure mass representation. For more 

common structures other numbers of masses, as appropriate. 
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should be added and the capability of the analog computer to 

account for nonlinear structural resistance should also be 

remembered. The behavior of such a model with appropriate 

coefficients could logically be subjected to a series of 

filtered white noise inputs and the results compared with those 

obtained from actual measurement on a structure due to earth

quake motion. 

e. The assignment of analog computer damping coefficients 

has been based on the known damping characteristics of one de

gree of freedom structures and foundations (see section VI). 

For the two mass approximation used in this study such a pro

cedure was suitable. However, when additional masses are in

cluded to more accurately describe the structure and/or foun

dation a good general method for assigning damping coefficients 

is not available. Research directed toward proper character

ization of such coefficients in a damped multidegree-of-free

dom system is a necessary prerequisite for extending this 

method into the non-proportional damping, many mass range. 

f. The modal analysis technique incorporating the assign

ment of modal damping coefficients does not appear as a very 

useful general analytical tool when the results of the analog-

digital comparison in this study are considered. Foss (13) 

has developed a technique to decouple the equations of motion 

into a system of exponentially damped varying phase angle modes. 

The setup and coding of his method for digital computation of 

the seismic problem appears promising. It would be interesting 
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to compare the results of such an analytical study with those 

presented in the analog portion of this investigation. 

g. There appears to be a real potential for increasing 

the seismic resistance of containment structures by inclusion 

of a low stiffness layer between the structure's base and its 

foundation. This investigation has indicated that proper mat 

selection could conceivably result in a ten-fold increase in 

containment seismic resistance. It could possibly increase 

the resistance of the structure to fault motion, as well. The 

importance of a precise knowledge of the in-place stiffness 

and damping properties of such a mat cannot be overemphasized. 

Further study of the possibility of enhancement of containment 

seismic resistance by use of such mats is suggested. 
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XV. APPENDIX 

A. Computer Programs Developed for and Used 

in the Analytical Investigation 

1. Tabulation of computer program variable identifiers 

M 

IMZ 

ISZ 

VALA 

VALB 

VALG 

VALD 

ICTR 

A(I,J) 

B(I,J) 

W(I,J) 

F(I) 

Yd,J) 

FRSR 

FTSR 

Degrees of freedom of problem 

Number of mass cases 

Number of stiffness situations per mass case 

Value of constant coefficient in R=AX^ approximation 

of response spectrum for frequencies less than 0.25 

cps 

Value of exponent in R=AX^ approximation of response 

spectrum for frequencies less than 0.25 cps 

Value of constant coefficient in R=AX^ approximation 

of response spectrum for frequencies greater than 

0.25 cps 

Value of exponent in R=AX^ approximation of response 

spectrum for frequencies greater than 0.25 cps 

Counter on mass cases 

Mass matrix 

Stiffness matrix 

Dummy for storage of stiffness matrix 

Forcing function matrix 

Dummy for storage of mass matrix 

Foundation rotational stiffness ratio (K^/K^.) 

Foundation translational stiffness ratio (K^/K^) 
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NROOT Subroutine (IBM) for computation of solution for 

matrix equation of the AX= XBX type 

XL(I) Dummy vector used to develop circular frequency 

squared and frequency values 

XNF(I,J) Matrix of normalization factor values 

Q(I,J) Matrix of normalized eigenvector 

T 
P(I) Matrix of e F values 

S(I,J) Matrix of structural modal response values 

QT(IjJ) Transponse of Q matrix 

SDOF(I) Spectral response vector 

RRM(I,J) Absolute value of relative structural response vector 

FVM(I) Absolute sum structural response vector 

FMS(I) Square root of sum of squares structural response 

vector 

2 ARA Computed fixed base X value 

ARB Computed fixed base X value 

FBF Fixed base frequency value 

FBR Fixed base structural response value 

X(I,J) Matrix of eigenvectors 

2. Main program 

STRUCTURAL SYSTEM RESPONSE BY MO CAL ANALYSIS 
DIMENSION A(3,3),B(3,3),XL(3) X(3,3),AA(9),BB(9),XX(9),F(3), 
1QT(3,3),P(3),C(3,3),XT(3,3),XNF(3,3),Q(3,3),D(3,3),S(3,3), 
1R(3),W(3,3),SD0F(3),RRM(3,3),FVM(3),FVS(3),Y(3,3) 
EQUIVALENCE (A(1,1),AA(1)),(B(1,1),BB(1)),(X(1,1),XX(1)) 
READ (1,1) M, IMZ,ISZ,VALA,VALB,VALC,VALD 

1 FORMAT (315,4F10.5) 
DO 99 L=1,IMZ 
ICTR=0 
DO 6 1=1, M 

6 READ (1,3) (B(I,J),J=1,M) 
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DO 98 1=1,M 
DO 98 J=L,M 

98 W(I,J) = 
READ (1,3) (F(I),I=1,M) 
DO 99 N=1,ISZ 
DO 2 J=1,M 

2 READ (1,3) (A(J,K),K=1,M) 
DO 78 1=1,M 
DO 78 J=1,M 

78 Y(I,J)=A(I,J) 
3 FORMAT (4F20.0) 
WRITE (3,40) L 

40 FORMAT (15H1 STRUCTURE TYPE 14) 
WRITE (3,7) 

7 FORMAT ( ' MASS MATRIX ' ) 
DO 62 1=1,M 
DO 62 J=1,M 

62 B(I,J) = W(I,J) 
DO 8 1=1,M 

8 WRITE (3,9) (B(I,J),J=1,M) 
WRITE (3,13) 

13 FORMAT ( ' FORCING FUNCTION MATRIX ' ) 
WRITE (3,21) (F(I),I=1,M) 
WRITE (3,50) 

50 FORMAT ( ' FOUNDATION ROTATIONAL STIFFNESS RATIO ' 
FRSR=A(M,M)/A(1,1) 
WRITE (3,21) FRSR 
WRITE (3,60) 

60 FORMAT ( ' FOUNDATION TRANSLATION STIFFNESS RATIO 
FTSR=(A(2,2)-A(1,1))/A(1,1) 
WRITE (3,21) FTSR 
WRITE (3,4) 

4 FORMAT ( ' STIFFNESS MATRIX ' ) 
DO 5 1=1,M 

5 WRITE (3,9) (A(I,K),K=1,M) 
9 FORMAT (6F21.7) 
DO 30 1=1,M 
DO 30 J=1,M 

30 D(I,J)=B(I,J) 
CALL NROOT (M,AA,BB,XL,XX) 
WRITE (3,10) 

10 FORMAT ( ' EIGENVALUE SQUARED VECTOR ' ) 
WRITE (3,21) (XL(I),I=1,M) 
DO 55 1=1,M 
XL(I)=SQRT(XL(I)) 

55 XL(I)=XL(I)/6.2800 
WRITE (3,31) 

31 FORMAT ( ' FREQUENCY VECTOR ' ) 
WRITE (3,21) (XL(I),I=1,M) 
WRITE (3,11) 

11 FORMAT ( ' EIGENVECTOR MATRIX ' ) 



www.manaraa.com

205 

DO 12 1=1.M 
12 WRITE (3,21) (X(I,J),J=1,M) 
21 FORMAT (10F13.5) 

DO 17 1=1,M 
DO 17 J=1,M 
0(I,J)=0.0 
DO 17 K=1,M 

17 C(I,J)=C(I,J) +D(I,K)*X(K,J) 
DO 27 1=1,M 
DO 27 J=1,M 

27 XT(I,J)=X(J,I) 
DO 18 1=1,M 
DO 18 J=1,M 
XNF(I,J)=0.0 
DO 18 K=1,M 

18 XNF(I,J)=XNF(I,J)+XT(I,K)*C(K,J) 
WRITE (3,19) 

19 FŒIMAT ( ' NORMALIZATION FACTOR SQUARED MATRIX ' ) 
DO 20 1=1,M 

20 WRITE (3,21) (XNF(I,J),J=1,M) 
DO 25 J=1,M 
DO 25 1=1,M 

25 XNF(I,J)=SQRT(XNF(J,J)) 
DO 22 1=1, M 
DO 22 J=1,M 

22 Q(I,J)=0.0 
DO 23 J=1,M 
DO 23 1=1,M 

23 Q(I,J)=X(I,J)/XNF(J,J) 
WRITE (3,24) 

24 FORMAT ( ' NORMALIZED EIGENVECTOR MATRIX ' ) 
DO 28 1=1,M 

28 WRITE (3,21) (Q(I,J),J=1,M) 
MMOD= M-2 
DO 75 I=1,MM0D 
DO 75 J=1,M 
S(I,J) = 0.0 

75 S(I,J)=Q(I,J)-Q(I+1,J) 
WRITE (3,76) 

76 FORMAT ( ' STRUCTURAL RESPONSE MATRIX ' ) 
DO 77 I=1,MM0D 

77 WRITE (3,21) (S(I,J),J=1,M) 
DO 14 1=1,M 
DO 14 J=1,M 

14 QT(I,J)=Q(J,I) 
DO 15 1=1,M 
P(I)=0.0 
DO 15 J=1,M 

15 P(I)= P(I) + QT(I,J)*F(J) 
WRITE (3,16) 

16 FORMAT ( ' PARTICIPATION FACTORS ' ) 
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WRITE (3,21) (P(I),I=1,M) 
DO 81 I=I,MMOD 
DO 81 J=I,M 
R(I,J) = 0.0 

81 R(I,J) = S(I,J)*P(J) 
WRITE (3,82) 

82 FORMAT ( ' INTERMEDIATE ANSWER MATRDL ' ) 
DO 97 I=1,MM0D 

97 WRITE (3,21) (R(I,J),J=1,M) 
SUBSECTION FOR DETERMINATION OF SPECTRAL RESPONSE 
DO 41 1=1,M 
IF(XL(I)-0.2500) 42,42,43 

42 SDOF(I)=VALA*XL(I)**VALB 
GO TO 41 

43 S DOF(I)=VALC*XL(I)**VALD 
41 CONTINUE 

SUBSECTION FOR DETERMINATION OF MAXIMUM POSSIBLE 
RELATIVE MASS DISPLACEMENT 
DO 44 I=1,MM0D 
DO 44 J=1,M 

44 RRM(I,J)=SDOF(J)*R(I,J) 
DO 45 I=1,MM0D 
DO 45 J=1,M 

45 RRM(I,J)=ABS(RRM(I,J)) 
DO 46 I=1,MM0D 
FVM(I)=0.0 
DO 46 J=1,M 

46 FVM(I)=FVM(I)+RRM(I,J) 
WP.ITE (3,47) 

47 FORMAT ( ' ABSOLUTE RESPONSE » ) 
DO 58 I=1,MM0D 

58 WRITE (3,21) FVM(I) 
SUBSECTION FOR DETERMINATION OF SUM OF SQURES 
RELATIVE MASS DISPLACEMENT 
DO 48 I=1,MM0D 
FVG(I)+0.0 
DO 48 J=1,M 
RRM( I, J )=RRM( I, J)*RRM( I, J ) 

48 FVS(I)=FVS(I)+RRM(I,J) 
DO 49 1=1, MMOD 

49 FVS(I)=SQRT(FVS(I)) 
WRITE (3,51) 

51 FORMAT ( ' SUM OF SQuaRES RESPONSE ' ) 
DO 91 1=1,MMOD 

91 WRITE (3,21) FVS(I) 
SUBSECTION FOR DETERMINATION OF FIXED BASE STRUCTURAL RE
WRITE (3,71) SPONSE 

71 FORMAT ( ' RESPONSE SPECTRUM SPECIFICATION DATA ' ) 
WRITE (3,21) VALA,VALB,VALC,VALD 
ARA=Y(1,1)/W(1,1) 
ARB=SQRT(ARA) 
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FBF=ARB/6.28 
IF(FBF-0.2500)83,83,84 

83 FBR=VALA*FBF**VALB 
GO TO 85 

84 FBR=VALC*FBF**VALD 
85 CONTINUE 

WRITE (3,86) FBR 
86 FORMAT (33H RESPONSE NORMALIZATION FACTOR IS F8.4) 

SUBSECTION FOR NORMALIZATION OF RESPONSES 
DO 101 I=1,MM0D 
FVM(I)=FVM(I)/FBR 

101 FVS(I)=FVS(I)/FBR 
WRITE (3,102) 

102 FORMAT ( ' NORMALIZED ABSOLUTE RESPONSE ' ) 
DO 103 1=1,MMOD 

103 WRITE (3,21) FVM(I) 
WRITE (3,104) 

104 FORMAT ( ' NORMALIZED SUM OF SQUARES RESPONSE ' ) 
DO 99 I=1,MM0D 

99 WRITE (3,21) FVS(I) 
STOP 
END 

3. Subroutine for eigenvalues and eigenvectors of real non-

symmetric matrix (31) 

COMPUTE EIGENVALUES AND EIGENVECTORS OF B 

K—1 
DO 100 J-2,M 
L=M*(J-1) 
DO 100 1=1,j 
L=L+1 
K=K+1 

100 B(K)=B(L) 
THE MATRIX B IS A REAL SYMMETRIC MATRIX. 

MV=0 
CALL EIGEN (B,X,M,MV) 

FORM RECIPROCALS OF SQUARE ROOT OF EIGENVALUES. THE RE
SULTS ARE PREMULTIPLIED BY THE ASSOCIATED EIGENVECTORS. 

L=0 
DO 110 J=1,M 
L=L+J 

110 XL(J)=1.0/ SQRT( ABS(BL))) 
K=0 
DO 115 J=1,M 
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DO 115 1=1,M 
K=K+1 

115 B(K)=X(K)*XL(J) 
FORM (B**(-1/2))PRIME * A * (B**(-l/2)) 

DO 120 1=1,M 
N2=0 
DO 120 J=1,M 
N1=M*(I-1) 
L=M*(J-1)+I 
X(L)=0.0 
DO 120 K=1,M 
N1=N1+1 
N2=N2+1 

120 X(L)=X(L)+B(N1)*A(N2) 
L=0 
DO 130 J=1,M 
DO 130 1=1,j 
N1=I-M 
N2=M*(J-1) 
L=L+1 
A(L)=0.0 
DO 130 K=1,M 
N1=N1+M 
N2=N2+1 

130 A(L)=A(L)+X(N1)*B(N2) 

COMPUTE EIGENVALUES AND EIGENVECTORS OF A 

CALL EIGEN (A,X,M,MV) 
L=0 
DO 140 1=1,M 
L=L+I 

140 XL(I)=A(L) 

COMPUTE THE NORMALIZED EIGENVECTORS 

DO 150 1=1,M 
N2=0 
DO 150 J=1,M 
N1=I-M 
L=M*(J-1)+I 
A(L)=0.0 
DO 150 K=1,M 
N1=N1+M 
N2=N2+1 

150 A(L)=A(L)+B(N1)*X(N2) 
L=0 
K=0 
DO 180 J=1,M 
SUMV=0.0 
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DO 170 1=1,M 
L=L+1 

170 SUMV=SUMV+A(L)*A(L) 
175 SUMV= SQRT(SUMV) 

DO 180 1=1,M 
K=K+1 

180 X(K)=A(K)/SUMV 
RETURN 
END 

4. Subroutine for eigenvalues and eigenvectors of a real 

symmetric matrix by Jacobi rotations (31) 

SUBROUTINE EIGEIJ 

SUBROUTINE EIGEN (A,R,N,MV) 
DIMENSION A(I),R(1) 

GENERATE IDENTITY MATRIX 

5 RANGE=1.0E-6 
IF(MV-l) 10,25,10 

10 IQ=-N 
DO 20 J=1,N 
IQ=IQ+N 
DO 20 1=1,N 
IJ=IQ+I 
R(IJ)=0.0 
IF(I-J) 20,15,20 

15 R(IJ)=1.0 
20 CONTINUE 

COMPUTE INITIAL AND FINAL NORMS (ANORM AND ANORMX) 

25 ANORM=0.0 
DO 35 1=1,N 
DO 35 J=1,N 
IF(I-J) 30,35,30 

30 IA=1+(J*J)/2 
ANORM=ANORM+A(IA)*A(lA) 

35 CONTINUE 
IF(ANORM) 165,165,40 

40 AN0RM=1.414*SQRT(AN0RM) 
ANRMX=ANORM* RANGE/FLOAT (N ) 

INITIALIZE INDICATORS AND COMPUTE THRESHOLD, THR 

IND=0 
THR=ANORM 
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45 THR=THR/FL0AT(N) 
50 L=1 
55 M=L+1 

COMPUTE SIN AND COS 

60 MQ=(M*M-M)/2 
LQ=(L*L)/2 
LM=L+MQ 

62 IF( ABS(A(LM))-THR) 130,65,65 
65 IND=1 

LL=L+LQ 
MM=M+MQ 
X=0. 5* (A( LL) -A(MM) ) 

68 Y=-A(IM)/ SQRT(A(LM)*A(LM)+X*X) 
IF(X) 70,75,75 

70 Y=-Y 
75 SINX=Y/ SQRT(2.0*1.0+( SQRT(1.0-Y*Y)))) 

SINX2=SINX*SINX 
78 C0SX= SQRT(1.C-SINX2) 

C0SX2=C0SX*C0SX 
SINOS = SINX*C0SX 

ROTATE L AND M COLUMNS 

ILQ=N*(L-1) 
IMQ=N*(M-1) 
DO 125 1=1,N 
IQ=(I*I-I)/2 
IF(I-L) 80,115,80 

80 IF(I-M) 85,115,90 
85 IM=I+MQ 

GO TO 95 
90 IM=M+IQ 
95 IF(I-L) 100,105,105 
100 IL=I+LQ 

GO TO 110 
105 IL=L+IQ 
110 X=A(IL)*COSX-A(IM)*SINX 

A(IM)=A( IL)*SINX+A( IM)*COSX 
A(IL)=X 

115 IF(MV-l) 120,125,120 
J._0 ILR=ILQ+I 

IMR=IMQ+I 
X=R(ILR)*COSX-R(IMR)* SINX 
R( IMR) =R( ILR)*SINX+R( IMR)*COSX 
R(ILR)=X 

125 CONTINUE 
X=2.0*A(LM)*SINCS 
Y=A(LL)*C0SX2+A(MM)*SINX2-X 
X=A(LL)*SINX2+A(MM)*C0SX2+X 
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A(I24) = (A(LL)-A(MM)*SINCS+A(LM)*(COSX2-SINX2) 
A(LL)=Y 
A(MM)=X 

TESTS FOR COMPLETION 

TEST FOR M = LAST COLUMN 

130 IF(M-N) 135,140,135 
135 M=M+1 

GO TO 60 

TEST FOR L = SECOND FROM LAST COLUMN 

140 IF(L-(N-1) 145,150,145 
145 L=L+1 

GO TO 55 
150 IF(IND-l) 160,155,160 
155 IND=0 

GO TO 50 

COMPARE THRESHOLD WITH FINAL NORM 

160 IF(THR-ANRMX) 165,165,45 

SORT EIGENVALUES AND EIGENVECTORS 

165 IQ=-N 
DO 185 1=1,N 
IQ=IQ+N 
LL=I+(I*I)/2 
JQ=N*(I-2) 
DO 185 J=1,N 
JQ=JQ+N 
MM=J+(J*J-J)/2 
IF(A(LL)-A(MM)) 170,185,185 

170 X=A(LL) 
A(LL)=A(MM) 
A(MM)=X 
IF(MV-l) 175,185,175 

175 DO 180 K=1,N 
ILR=IQ+K 
IMR=JQ+K 
X=R(ILR) 
R(ILR)=R(IMR) 

180 R(IMR)=X 
185 CONTINUE 

RETURN 
END 
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5. Typical output data from computer program 

0.0000000 
1880.0000000 

0.0000000 

1880.00000 

STRUCTURE TYPE 1 
MASS MATRIX 

591.0000000 
0.0000000 

76900.0000000 
FORCING FUNCTION MATRIX 

591.00000 
FOUNDATION ROTATIONAL STIFFNESS RATIO 

6329.10900 
FOUNDATION TRANSLATIONAL STIFFNESS RATIO 

1.78481 
STIFFNESS MATRIX 

1580000.0000000 -1580000.0000000 
-1580000.0000000 4400000.0000000 

0.0000000 0.0000000 

76900. 
0 .  

25000000. 

0000000 
0000000 
0000000 

76900.00000 

0 
0 

99999998000 

0000000 
.0000000 
,0000000 

5820.60100 1287.35500 356.92480 
FREQUENCY VECTOR 

12.14854 5.71333 3.00835 
EIGENVECTOR MATRIX 

0.97205 0.78160 0.92051 
-0.23474 0.62377 0.39003 
-0.00321 -0.00349 0.02346 

NORMALIZATION FACTOR SQUARED MATRIX 
439.72970 0.00040 0.00000 
0.00052 977.39230 -0.00195 
0.00073 -0.00049 17870.37000 

NORMALIZED EIGENVECTOR MATRIX 
0.04636 0.02500 0.00689 
-0.01119 0.01995 0.00292 
-0.00015 -0.00011 0.00018 

STRUCTURAL RESPONSE MATRIX 
0.05755 0.00505 0.00397 

PARTICIPATION FACTORS 
-5.42338 43.70603 23.05142 

INTERMEDIATE ANSWER MATRIX 
-0.31211 0.22064 0.69147 

ABSOLUTE RESPONSE 
0.02735 

SUM OF SQUARES RESPONSE 
0.01615 

RESPONSE SPECTRUM SPECIFICATION DATA 
2.41000 0.13450 0.39000 -1.17500 

RESPONSE NORMALIZATION FACTOR IS 0.0328 
NORMALIZED ABSOLUTE RESPONSE 

0.83514 
NORMALIZED SUM OF SQUARES RESPONSE 

0.49304 
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B. Tabulated Data Used in Analog and Digital 

Computer Analyses 
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Table 2. Fixed foundation for parameters for containment structures 

Structural type 
Parameter I II III IV V 

^1 
(Soft) 2. 82x10^ 2 .82x10^ 2. 82x10^ 2. 82x10^ 4. 9 xlO^ 

^1 
(Firm) 2. 

m
 o
 

00 

2 .82x10^ 2. 82x10^ 2. 82x10^ 4. 9 xlO^ 

^1 
(Stiff) 2. 82x10^ 2 

v
O
 
O
 

00 

2. 82x10^ 2. 82x10^ 4. 9 xlO^ 

(Soft) 1. 00x10® 1 .00x10® 1. 00x10® 1. 00x10® 3. 00x10® 

K 
r 

(Firm 1. 00x10^ 1 .00x10^ 1. 00x10^ 1. 00x10^ 3. 00x10^ 

(Stiff) 1. 00x10^° 1 .00x10^° 1. 00x10^° 1. 00x10^° 3. 00x10^° 

10. 0 xlO^ 47 .6 xlO^ 10. 5 xlO^ 54. 2 xlO^ 

^2^2 ^0 
25. 0 xlO^ 62 .6 xlO^ 25. 5 xlO^ 69. 2 xlO^ 21. 0 xlO^ 

The values for mass (Mj^ and M^), structural height (H^) and internal 
moment of inertia were taken from typical containment data. The values 
of stiffness and damping were computed using the procedures described in 
section VI. 
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Table 3. ' Structural parameters for two free mass containment structural 

idealization 

Structural type 
Parameter I II III IV V 

«1 1880 2450 1890 2680 2793 

^2 
591 763 621 867 1070 

«2 130 250 130 250 140 

^2^2 
10 xlO^ 47.6 xlO^ 10.5 xlO^ 54.2 xlO^ 21.0 xlO^ 

4 
25.0 xlO^ 62.6 xlO^ 25.5 xlO^ 69.2 xlO^ 21.0 xlO^ 

^2 
1.58x10^ .56x10^ 2.16x10^ .70x10^ 1.98x10^ 

S 
(2%) 1.23x10^ .83x10^ 1.46x10^ 1.00x10^ 1.84x10^ 

S 
(5%) 3.07x10^ 2.07x10^ 3.66x10^ 2.46x10^ 4.60x10^ 
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No. 

1 2670 130 0841 
2 2.08 2670 130 0.654 0841 
3 2.08 2670 130 0.654 0841 
4 2.08 2670 130 0.654 0841 
5 2670 130 0841 
6 2.08 2670 130 0.654 0841 
7 2.08 2670 130 0.654 08^1 
8 2.08 2670 130 0.654 0841 
9 2670 130 0841 

10 2.08 2670 130 0.654 0841 
11 2.08 2670 130 0.654 0841 
^2 2.08 2670 130 0.654 0841 
3 0734 250 0162 

14 1.09 0734 250 0.240 0162 
15 1.09 0734 250 0.240 0162 
16 1.09 0734 250 0.240 0162 
17 0734 250 0162 
18 1.09 0734 250 0 240 0162 
19 1.09 0734 250 0.240 0162 
20 1.09 0734 250 0.240 0162 
21 U734 250 0162 
22 1.09 0734 250 0.240 0162 
23 1.09 0734 250 0.240 0162 
24 1.09 0734 250 0.240 0162 
25 3480 130 1140 
26 5.89 3480 130 1.94 1140 
27 5.89 3480 130 1.94 1140 
28 5.89 3480 130 1.94 1140 
29 3480 130 1140 

of containment structural systems 

K^/«i Kt/M^Hj +Ig 
"2"2' 
«2«2 «0 

.0015 004.0 .0031 
1.383 .0015 00.40 004.0 .0031 
.00766 .0015 00.80 004.0 .0031 
.01532 .0015 01.60 004.0 .0031 

.0150 040.0 .0031 
.01230 .0150 01.26 040.0 .0031 
.02460 .0150 02.52 040.0 .0031 
.04900 .0150 05.04 040.0 .0031 

.1500 400.0 .0031 
.03830 .1500 04.0 400.0 .0031 
.07660 .1500 08.0 400.0 .0031 
.15320 .1500 12.0 400.0 .0031 

.0008 1.6 .0030 
.00344 .0008 00.254 1.6 .0030 
.00568 .0008 00.508 1.6 .0030 
.01136 .0008 01.016 1.6 .0030 

.0082 16.0 .0030 
.00882 .0082 00.798 16.0 .0030 
.01764 .0082 01.600 16.0 .0030 
.03528 .0082 03.200 16.0 .0030 

.0820 160.0 .0030 
.02840 .0820 02.540 160.0 .0030 
.04680 .0820 05.080 160.0 .0030 
.11720 .0820 10.160 160.0 .0030 

.0015 4.0 .0030 
.00386 .0015 00.40 4.0 .0030 
.00772 .0015 00,80 4.0 .0030 
.01544 .0015 01.60 4.0 .0030 

.OOlS 40.0 .0030 
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Case 
No. C2/M2 Cg/Mi Kg/M^ Ci/M^ 

30 5.89 3480 130 1.94 1140 .0243 
31 5.89 3480 130 1.94 1140 .0486 
32 5.89 3480 130 1.94 1140 .0926 
33 3480 130 1140 
34 5.89 3480 130 1.94 1140 .0386 
35 5.89 3480 130 1.94 1140 .0772 
36 5.89 3480 130 1.94 1140 .1544 
37 1120 250 0262 
38 2.84 1120 250 0.918 0262 .00325 
39 2.84 1120 250 0.918 0262 .00650 
40 2.84 1120 250 0.918 0262 .0130 
41 1120 250 0262 
42 2.84 1120 250 0.918 0262 .01020 
43 2.84 1120 250 0.918 0262 .02040 
44 2.84 1120 250 0.918 0262 .04080 
45 1120 250 0262 
46 2.84 1120 250 0.918 0262 .0325 
47 2.84 1120 250 0.918 0262 .0650 
48 2.84 1120 250 0.918 0262 .1300 
49 2280 140 0709 
50 4.26 2280 140 4.26 0709 .00419 
51 4.26 2280 140 4.26 0709 .0082 
52 4.26 2280 140 4.26 0709 .0167 
53 2280 140 0709 
54 4.26 2280 140 4.26 0709 .0133 
55 4.26 2280 140 4.26 0709 .0266 

K^/Mi 
2 "2"2/ 

V%+:o 

.0150 

.0150 

.0150 

.1500 

.1500 

.1500 

.1500 

.0010 

.0010 

.0010 

.0010 

.0105 

.0105 

.0105 

.0105 

.1050 
.1050 
.1050 
.1050 
.0018 
.0018 
.0018 
.0018 
.0175 
.0175 
.0175 

01.26 
02.52 
05.04 

04.0 
08.0 
12.0 

00.234 
00.468 
00.936 

00.760 
01.52 
03.04 

02.4 
04.8 
09.6 

00.747 
01.494 
03.000 

02.40 
04.80 

40.0 
40.0 
40.0 

400.0 
400.0 
400.0 
400.0 

1.45 
1.45 
1.45 
1.45 

14.5 
14.5 
14.5 
14.5 

145.0 
145.0 
145.0 
145.0 
14.3 
14.3 
14.3 
14.3 

143.0 
143.0 
143.0 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 

.0030 
.0030 
.0071 
.0071 
.0071 
.0071 
.0071 
.0071 
.0071 
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Case 
No. C2/M2 K^/Mj H, Cj/M^ h'\ Cj/Mj Ki/Mi W2 «0 '=r'»2»2 «0 

«2«2' 

"2*2 ̂ '0 

56 4.26 2280 140 4.26 0709 .0526 .0175 09.60 143.0 .0071 
57 2280 140 0709 .1750 1430 .0071 
58 4.26 2280 140 4.26 0709 .0419 .1750 07.57 1430 .0071 
59 4.26 2280 140 4.26 0709 .0838 .1750 15.14 1430 .0071 
60 4.26 2280 140 4.26 0709 .1676 .1750 30.28 1430 .0071 
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Table 5. Constants for two free mass analyses of fixed base containment 

systems 

1 0 2670 130 

2 2.08 2670 130 

3 5.20 2670 130 

4 0 0734 250 

5 1.09 0734 250 

6 2.72 0734 250 

7 0 3480 130 

8 2.36 3480 130 

9 5.89 3480 130 

10 0 1120 250 

11 1.14 1120 250 

12 2.84 1120 250 

13 0 2280 140 

14 1.71 2280 140 

15 4.26 2280 140 
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No. 

16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 

6. Constants for two free mass analyses of type one containment systems 

K2/M2 H. Kj/M^ C^/Hi 

2.08 2670 130 0.654 0841 00.45 0015 00.20 004.0 
2.08 2670 130 0.654 0841 00.90 0015 00.40 004.0 
2.08 2670 130 0.654 0841 01.80 0015 00.80 004.0 
2.08 2670 130 0.654 0841 03.60 0015 01.60 004.0 
2.08 2670 130 0.654 0841 01.42 0150 00.63 040.0 
2.08 2670 130 0.654 0841 02.85 0150 01.26 040.0 
2.08 2670 130 0.654 0841 05.70 0150 02.52 040.0 
2.08 2670 130 0.654 0841 11.40 0150 05.04 040.0 
2.08 2670 130 0.654 0841 04.50 1500 01.50 400.0 
2.08 2670 130 0.654 0841 09.00 1500 03.00 400.0 
2,08 2670 130 0.654 0841 18.00 1500 06.00 400.0 
2.08 2670 130 0.654 0841 36.00 1500 12.00 400.0 
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Table 7. Tabulation of selected ratios, type I structure 

No base translation No base rotation 

K K /K_ K K, K, /K_ K, /M, 
r r 2 r 2 0 1 1 2 1 1 

30.0x10^ 19.0 001.2 .845x10% 0.00535 00004.5 
60.0x10: 38.0 002.4 1.69 xio; 0.01070 00009.0 

100.0x10:* 63.3 004.0* 2.82 xlO? 0.01790 00015. * 
300.0x10: 190.0 012.0 8.45 xlO* 0.05350 00045. 
600.0x10: 380.0 024.0 1.69 xlO^ 0.1070 00090. 

l.OxlOq* 633.0 040.0* 2.82 xlO^ 0.1790 00150. * 
3.0xl0q 1900.0 120.0 8.45 xlO^ 0.535 00450. 
6.0xl0g 3800.0 240.0 1.69 xl09 1.070 00900. 

lO.OxlOg* 6330.0 400.0* 2.82 xlO: 1.790 01500. * 
30.0xl0q 19000.0 1200.0 8.45 xlO: 5.35 04500. 
60.0xl0g 38000.0 2400.0 1.69 xio' 10.70 09000. 

100.0x10 63000.0 4000.0 2.82 xlO 17.90 15000. 

*Note Kg = 1.58 x 10^ 

= 25.0 X 10^ 

= 1880. 
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Translat ion/Rotat ion 

1 '^"=2 \ 

0. 845x10^ .00535 30. 0x10* 000045. 0001.2 
1. 69 xio; .01070 60. 0x10* 0000. 9 0002.4 
2. 82 xlO, .01790 100. 0x10: 0001. 5 0004.0 
8. 450x10% .0535 300. 0x10: 0004. 5 0012.0 
1. 69 xlO^ .1070 600. 0x10° 0009. 0 0024.0 
2. 82 xlO^ .1790 10 XlOg 0015. 0 0040.0 
8. 45 xlO^ .535 3. oxioj 0045. 0 0120. 
1. 69 xlO* 1 .070 6. OxlOg 0090. 0 0240. 
2. 82 xlO. 1 .790 10. oxio; 0150. 0 0400. 
8. 45 xlO* 5 .35 30. 0x10: 0450. 0 1200. 
1. 69 xio' 10 .70 60. OxlOg 0900. 0 2400. 
2. 82 xio' 17 .90 100. 0x10 1500. 0 4000.0 
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Table 8. Tabulation of constants for type I structure two free mass analysis, no damping 

N^ber •*2 Vl'h h'h 

I 1 2670. 130. 0.0031 001.2 0841. 0000.45 
I 2 2670. 130. 0.0031 002.4 0841. 0000.90 
I 3* 2670. 130. 0.0031 004.0 0841. 0001.5 
I 4 2670. 130. 0.0031 012.0 0841. 0004.5 
I 5 2670. 130. 0.0031 024.0 0841. 0009.0 
I 6* 2670. 130. 0.0031 040.0 0841. 0015.0 
I 7 2670. 130. 0.0031 120.0 0841. 0045.0 
I 8 2670. 130. 0.0031 240.0 0841. 0090.0 
I 9* 2670. 130. 0.0031 400.0 0841. 0150.0 
no 2670. 130. 0.0031 1200.0(1) 0841. 0450.0 
111 2670. 130. 0.0031 2400.0(1) 0841. 0900.0 
112 2670. 130. 0.0031 4000.0(1) 0841. 1500.0 
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Table 9. Tabulation of damping constants for type I structure 

T a"' ^ Vh 

lA 0.02 2.08 0.02 0.845x10% 0.654 0.0872 0.02 30 XlO* 0.0428 
IB 0.02 2.08 0.05 0.845x10? 0.654 0.218 0.05 30 xlO, 0.107 
IC 0.02 2.08 0.10 0.845x107 0.654 0.436 0.10 30 XlO* 0.215 
ID 0.02 2.08 0.20 0.845x107 0.654 0.872 0.20 30 XlO* 0.430 
IE 0.02 2.08 0.40 0.845x107 0.654 1.744 0.40 30 xio! 0.860 
2A 0.02 2.08 0.02 1.69 xl07 0.654 0.1370 0.02 60 xlO, 0.0660 
2B 0.02 2.08 0.05 1.69 xl07 0.654 0.343 O.O'j 60 xio! 0.165 
2C 0.02 2.08 0.10 1.69 xl07 0.654 0.686 0.10 60 XlO* 0.310 
2D 0.02 2.08 0.20 1.69 xlO? 0.654 1.372 0.20 60 xio! 0.620 
2E 0.02 2.08 0.40 1.69 xl07 0.654 2.744 0.40 60 XlO* 1.240 
3A 0.02 2.08 0.02 2.82 xl07 0.654 0.1800 0.02 100 XlO* 0.0800 
33 0.02 2.08 0.05 2.82 xl07 0.654 0.4520 0.05 100 xio! 0.2000 
3C 0.02 2,08 0.10 2.82 xl07 0.654 0.9040 0.10 100 xlO, 0.4000 
3D 0.02 2.08 0.20 2.82 xl07 0.654 1.8080 0.20 100 xio! 0.8000 
3ÎS 0.02 2.08 0.40 2.82 xl07 0.654 3.6160 0.40 100 XlO* 1.6000 
4A 0.02 2.08 0.02 8.45 xl07 0.654 0.2750 0.20 300. 0x10? 0.1345 
4B 0.02 2.08 0.05 8.45 xl07 0.654 0.689 0.05 300. 0x10° 0.328 
4C 0.02 2.08 0.10 8.45 xl07 0.654 1.378 0.10 300.0x10" 0.656 
4D 0.02 2.08 0.20 8.45 xl07 0.654 2.756 0.20 300.0x10* 1.312 
4E 0.02 2.08 0.40 8.45 xlO: 0.654 5.512 0.40 300. 0x10" 2.624 
5A 0.02 2.08 0.02 1.69 xlO^ 0.654 0.4320 0.02 600 XlO* 0.0207 
5B 0.02 2.08 0.05 1.69 xlO^ 0.654 1.080 0.05 600 xio! 0.518 
5C 0.02 2.08 0.10 1.69 xlOq 0.654 2.170 0.10 600 xlO% 0.136 
5D 0.02 2.08 0.20 1.69 xlO^ 0.654 4.330 0.20 600 XlO* 0.272 
5E 0.02 2.08 0.40 1.69 xlO 0.654 8.686 0.40 600 xlO 0.544 
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Table 9. (Continued) 

f f 
Case struc- CL/M. transla- Kj 
No. ture tion 

6A 0.02 2.08 
6B 0.02 2.08 
6C 0.02 2.08 
6D 0.02 2.08 
6E 0.02 2.08 
7A 0.02 2.08 
7B 0.02 2.08 
7C 0.02 2.08 
7D 0.02 2.08 
7E 0.02 2.08 
8A 0.02 2.08 
8B 0.02 2.08 
8C 0.02 2.08 
8D 0.02 2.08 
8E 0.02 2.08 
9A 0.02 2.08 
9B 0.02 2.08 
9C 0.02 2.08 
9D 0.02 2.08 
9E 0.02 2.08 

lOA 0.02 2.08 
lOB 0.02 2.08 
lOC 0.02 2.08 
lOD 0.02 2.08 
lOE 0.02 2.08 
IIA 0.02 2.08 
IIB 0.02 2.08 
lie 0.02 2.08 

0.02 2.82 xlO^ 
0.05 2.82 xlO^ 
0.10 2.82 xlO^ 
0.20 2.82 xlO^ 
0.40 2.82 xlOq 
0.02 8.45 xlO^ 
0.05 8.45 xlO^ 
0.10 8.45 xlOq 
0.20 8.45 xlOq 
0.40 8.45 xlO^ 
0.02 1.69 xlO: 
0.05 1.69 xlO® 
0.10 1.69 xio; 
0.20 1.69 xl0° 
0.^3 1.69 xlO% 
0.02 2.82 xlO: 
0.05 2.82 xlO: 
0.10 2.82 xlO: 
0.20 2.82 xlO: 
0.40 2.82 xlO: 
0.02 8.45 xlO: 
0.05 8.45 xlO: 
0.10 8.45 xlO: 
0.20 8.45 xlO: 
0.40 8.45 xlO* 
0.02 1.69 xio' 
0.05 1.69 xio' 
0.10 1.69 xlO 

f 
Cy/M. CL/M, rota

tion 
K 
r 

0.654 0.564 0.02 
0.654 1.410 0.05 
0.654 2.820 0.10 
0.654 5.640 0.20 
0.654 11.280 0.40 
0.654 0.872 0.02 
0.654 2.180 0.05 
0.654 4.360 0.10 
0.654 8.720 0.20 
0.654 17.440 0.40 
0.654 1.370 0.02 
0.654 3.430 0.05 
0.654 6.860 0.10 
0.654 13.720 0.20 
0.654 27.440 0.40 
0.654 1.810 0.02 
0.654 4,520 0.05 
0.654 9.040 0.10 
0.654 18.080 0.20 
0.654 36.160 0.40 
0.654 2.750 0.02 
0.654 6.890 0.05 
0.654 13.780 0.10 
0.654 27.560 0.20 
0.654 55.120 0.40 
0.654 4.320 0.02 
0.654 10.800 0.05 
0.654 21.700 0.10 

xlOg 0.253 
XlO* 0.631 
XlOg 1.262 
XlO* 2.524 
XlO: 5.048 
xio; 0.428 
xio! 1.070 
XlO: 2.150 
xio: 4.300 
xio! 8.600 
xio; 0.660 
xlO 1.650 
xio: 3.100 
xio: 6.200 
xio! 12.400 
xio: 0.800 
xio; 2.000 
xio! 4.000 
XlOg 8.000 
XlO* 16.000 

0x10: 1.345 
0x10: 3.280 
0x10: 6.560 
oxio; 13.120 
0x10: 26.240 
oxio; 2.070 
oxio; 5.180 
0x10^ 13.600 

1 
1 
1 
1 
1 
3 
3 
3 
3 
3 
6 
6 
6 
6 
6 

10 
10 
10 
10 
10 
30. 
30. 
30. 
30. 
30. 
60. 
60. 
60. 
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Table 9. (Continued) 

T "i c/», ^ c/i. 

IID 0.02 2.0W 0.20 1.69 xlO? 0.654 43.300 0.20 60.0xl0g 27.200 
HE 0.02 2.08 0.40 1.69 xlO, 0.654 86.860 0.40 60.0x10: 54.000 
12A 0.02 2.08 0.02 2.82 xlO, 0.654 5.640 0.02 lOO.OxlOg 2.530 
12B 0.02 2.08 0.05 2.82 xio' 0.654 14.100 0.05 100.0x10: 6.310 
120 0.02 2.08 0.10 2.82 xio' 0.654 28.200 0.10 lOO.OxlOg 12.620 
12D 0.02 2.08 0,20 2.82 xio' 0.654 56.400 0.20 lOO.OxlOq 25.240 
12E 0.02 2.08 0.40 2.82 xio' 0.654 112.800 0.40 100.0x10 50.480 
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Table 10. Tabulation of selected ratios, type II structure* 

No base translation g No base rotation 
Kp/Kg K^/MgHg +Iq K^/Kg K^/M^ 

30 .Oxiof 53. 40 
60 .0x10: 106. 80 

100 .0x10: 178. 0 
300 .0x10° 534. 0 
600 f-*

 
o

 
D 

C 

1068. 0 
1 .OxlOq 1780. 0 
3 .OxlOq 5340. 0 
6 .OxlOg 10680. 0 

10 .OxlOq 17800. 0 
30 .OxlOq 53400. 0 
60 .OxlOq 106800. 0 

100 .0x10 178000. 0 

à 
000. 477 0.845x10, 
000. 954 1.69 xlO, 
001. 59 2.82 
004. 77 8.45 xlO^ 
009. 54 1.69 xlO^ 
015. 9 2.82 xlO^ 
047. 7 8.45 xlO? 
095. 4 1.69 xio! 
159. 0 2.82 
477. 0 8.45 xlO* 
954. 0 1.69 xio' 

1590. 0 2.82 xlO 

.015 0003.45 

.030 0006.89 

.051 0011.51 

.150 0034.5 

.30 0068.9 

.510 0115.1 
1.5 0345.0 
3.0 0689.0 
5.1 1151.0 

15.0 3450.0 
30.0 6890.0 

150.0 11510.0 

•*Note Kg = 0.56 x 10^ 

M2H2^+Io= 62.6 xlO^ 

= 2450 

1 -4 
— = 4.08 X 10 
"i 

1 -6 
~ = 1.78 X 10 * 
Kg 

^ = .0159 X 10"* 
62.6x10* 
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Translation/rotation 

4 
0.845x107 .01500 
1.69 xlOT .03000 
2.82 xlO% .0501 
0.845x10^ .1500 
1.69 xlO^ .300 
2.82 xlOq .501 
8.45 xlO^ 1.5000 
1.69 xlO: 3.0000 
2.82 xlO: 5.010 
8.45 xlO° 15.000 
1.69 xio' 30.000 
2.82 xlO 5.0100 

K^/Mi 

0003.45 000.477 
0006.89 000.954 
0011.51 001.59 
0034.5 004.77 
0068.9 009.54 
0115.1 015.9 
0345.0 047.7 
0689.0 095.7 
1151.0 159.0 
3450.0 477.0 
6890.0 954.0 

11510.0 1590.0 

30.0x10* 
60.0x10? 

100.0x10% 
300.0x10: 
600.0x10: 

1.0x10: 
3.0xl0q 
6.0x10: 

lO.OxlOq 
30.0x10: 
60.0x10: 

100.0x10 
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Table 11. Tabulation of constants for type II structure, two free mass analysis, no damping 

«SIL »2 Vl'h h'\ 

II 1 0734 250 0.0030 0477. 0.0228 00003.45 

II 2 0734 250 0.0030 0954. 0.0228 00006.89 

II 3* 0734 250 0.0030 0001.6 0.0228 01151. 

II 4 0734 250 0.0030 0004.77 0.0228 00345. 

II 5 0734 250 0.0030 0009.54 0.0228 00689. 

II 6* 0734 250 0.0030 0016.0 0.0228 01151. 

II 7 0734 250 0.0030 0047.7 0.0228 03450. 

II 8 0734 250 0.0030 0095.7 0.0228 06890. 

II 9* 0734 250 0.0030 0160.0 0.0228 01151. 

IIIO 0734 250 0.0030 0477.0 0.0228 03450. 

nil 0734 250 0.0030 0954.0 0.0228 06890. 

II12 0734 250 0.0030 1590.0 0.0228 11510. 
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Table 12, Tabulation of damping constants for type II structure 

"rT" <=2/»2 "C ^ tier \ ''Jh 

lA 0.02 01.09 0.02 0.845x10^ 0.339 0.0851 0.02 30.0x10* 0.02776 
IB 0.02 01.09 0.05 0.845x10? 0.339 0.213 0.05 30.0x10: 0.069 
IC 0.02 01.09 0.10 0.845x10, 0.339 0.427 0.10 30.0x10: 0.138 
ID 0,02 01.09 0.20 0.845x10, 0.339 0.854 0.20 30.0x10: 0.276 
IE 0,02 01.09 0.40 0.845x10/ 0.339 1.704 n.40 30.0x10: 0.552 
2A 0.02 01.09 0.02 1.69 xlO? 0.339 0.1210 0.02 60.0x10: 0.0392 
2B 0.02 01.09 0.05 1.69 xio; 0.339 0.301 0.05 60.0x10: 0.098 
2C 0.02 01.09 0.10 1.69 xio; 0.339 0.602 0.10 60.0x10: 0.196 
2D 0.02 01.09 0.20 1.69 xio; 0.339 1.204 0.20 60.0x10° 0.392 
2E 0.02 01.09 0.40 1.69 xlO, 0.339 2.408 0.40 60.0x10: 0.784 
3A 0.02 01.09 0.02 2.82 xlO, 0.339 0.155 0.02 100.0x10: 0.0509 
33 0.02 01.09 0.05 2.82 xlO, 0.339 0.387 0.05 100.0x10% 0.1272 
3C 0.02 01.09 0.10 2.82 xlO, 0.339 0.775 0.10 100.0x10: 0.2545 
3D 0.02 01.09 0.20 2.82 xlO, 0.339 1.450 0.20 100.0x10: 0.5090 
3E 0.02 01.09 0.40 2.82 xlO; 0.339 2.900 0.40 100.0x10: 1.0180 
4A 0.02 01.09 0.02 8.45 xlO; 0.339 0.2680 0.02 300 xio: 0.0872 
4B 0.02 01.09 0.05 8.45 xlO; 0.339 0.6700 0.05 300 xio: 0.218 
4C 0.02 01.09 0.10 8.45 xlO; 0.339 1.3400 0.10 300 xio: 0.436 
4D 0.02 01.09 0.20 8.45 xlO; 0.339 2.69 0.20 300 xio: 0.872 
4E 0.02 01.09 0.40 8.45 xlO: 0.339 5.4000 0.40 300 xio: 1.744 
5A 0.02 01.09 0.02 1.69 xlO^ 0.339 0.3810 0.02 600 xlO° 0.124 
5B 0.02 01.09 0.05 1.69 xlO, 0.339 0.9470 0.05 600 xio. 0.310 
5C 0.02 01.09 0.10 1.69 xlO^ 0.339 1.8940 0.10 600 xio: 0.620 
5D 0.02 01.09 0.20 1.69 XlOg 0.339 3.7880 0.20 600 xio: 1.040 
5E 0.02 01.09 0.40 1.69 xlO^ 0.339 7.5760 0.40 600 xio: 2.080 
6A 0 .02  01.09 0.02 2.82 XIO5 0.339 0.490 0.02 1000 xio: 0.1610 
6B 0.02 01.09 0.05 2.82 xlO 0.339 1.220 0.05 1000 xio: 0.4025 
6C 0.02 01.09 0.10 2.82 xlOq 0.339 2.440 0.10 1000 xlO% 0.8050 
6D 0.02 01.09 0.20 2.82 xlOq 0.339 4.880 0.20 1000 xio: 1.6100 
6E 0.02 01.09 0.40 2.82 xlO 0.339 9.760 0.40 1000 x J O  3.2200 
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Table 12. (Continued) 

Case 
No. 

f 
struc
ture 

f 
transla
tion *1 Ca/Mi Ci/Mi 

f 
rota
tion 

K 
r Cr/lT 

7A 0.02 01.09 0.02 8.45 xio' 0.339 0.851 0.02 3.0xl0g 0.276 
7B 0.02 01.09 0.05 8.45 *10, 0.339 2.130 0.05 3.0xl0g 0.690 
7C 0.02 01.09 0.10 8.45 xlO, 0.339 4.270 0.10 3.0xlOq 1.380 
7D 0.02 01.09 0.20 8.45 xlO, 0.339 8.540 0.20 3.0xl0g 2.760 
7E 0.02 01.09 0.40 8.45 xio' 0.339 17.04 0.40 3.0xl0g 5.520 
8A 0.02 01.09 0.02 1.69 XlO* 0.339 1.210 0.02 6.0xl0q 0.392 
SB 0.02 01.09 0.05 1.69 xio! 0,339 3.010 0.05 6.0xl0g 0.980 
8C 0.02 01.09 0.10 1.69 *10 0.339 6.02 0.10 6.0xl0g 1.960 
8D 0.02 01.09 0.20 1.69 xlO° 0.339 12.04 0.20 6.0x10. 3.920 
8E 0.02 01.09 0.40 1.69 XlO® 0.339 24.08 0.40 6.0x10: 7.840 
9A 0.02 01.09 0.02 2.82 xlO% 0.339 1.55 0.02 lO.OxlOg 0.509 
93 0.02 01.09 0.05 2.82 *10° 0.339 3.87 0.05 lO.OxlOg 1.272 
9C 0.02 01.09 0.10 2.82 xio! 0.339 7.75 0.10 lO.OxlOg 2.545 
9D 0.02 01.09 0.20 2.82 *10* 0.339 14.50 0.20 lO.OxlOg 5.090 
9E 0.02 01.09 0.40 2.82 *10* 0.339 29.00 0.40 10.0x10: 10.180 

lOA 0.02 01.09 0.02 8.45 XlO* 0.339 2.680 0.02 30.0xl0g 0.872 
lOB 0.02 01.09 0.05 8.45 *10* 0.339 6.700 0.05 30.0xi0: 2.180 
IOC 0.02 01.09 0.10 8.45 *10, 0.339 13.400 0.10 30.0xl0g 4.360 
lOD 0.02 01.09 0.20 8.45 XlO* 0.339 26.900 0.20 30.0xl0g 8.720 
lOE 0.02 01.09 0.40 8.45 xio: 0.339 54.000 0.40 30.0x10: 17.440 
llA 0.02 01.09 0.02 1.69 xlO, 0.339 3.810 0.02 60.0xl0q 1.24 
IIB 0.02 01.09 0.05 1.69 xlO, 0.339 9.470 0.05 60.0xl0g 3.10 
lie 0.02 01.09 0.10 1.69 xio' 0.339 18.940 0.10 60.0xl0q 6.20 
llD 0.02 01.09 0.20 1.69 xio' 0.339 37.880 0.20 60.0xl0g 10.40 
HE 0.02 01.09 0.40 1.69 xio' 0.339 75.760 0.40 60.0X10q 20.80 
12A 0.02 01.09 0.02 2.82 xio' 0.339 4.900 0.02 100.0x10 1.610 
12B 0.02 01.09 0.05 2.82 xio' 0.339 12.200 0.05 lOO.OxlOg 4.025 
12C 0.02 01.09 0.10 2.82 xlO, 0.339 24.400 0.10 lOO.OxlOq 8.050 
12D 0.02 01.09 0.20 2.82 xlO, 0.339 48.800 0.20 lOO.OxlOg 16.100 
12E 0.02 01.09 0.40 2.82 xio' 0.339 97.600 0.40 100.0x10 32.200 
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